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1 Introduction

The evaluation of scalar loop integrals is one of the time consuming parts of radiative
correction computations in high energy physics. Of course there exists a general solu-
tion for these integrals [1], but the formulae are involved and also the implementation
in a computer program is far from straightforward. This is particularly so due to very
complicated numerical problems. The traditional way to avoid these problems is to
do the integrals by hand for each special case separately (special cases can give much
compacter formulae) and use a rather large precision when programming these formu-
lae. This costs much time. M. Veltman on the other hand has programmed the general
formulae in a program called FormF which allowed him to do some very complicated
radiative correction computations [2]. On a restricted class of computers this program
1s available. But even in this program the numerical problems have not been solved
completely, even though the precision with which some intermediate results are evalu-
ated is sometimes 120 decimal digits! There are many calculations for which it would
be difficult to use FormF. In addition the use of such an extended precision makes the
evaluation of the integrals rather slow. As long as one considers corrections to reactions
with only two particles in the final state this is not much of a problem. The amount of
computer time that is needed for the computation of reactions with more particles in
the final state seems however prohibitive.

It is therefore necessary to study the original integrals for scalar three- and four-point
functions again in order to find expressions for them that are numerically stable to such
an extent that they can be programmed in a standard precision. This involves of course
more work. During this work we encountered some rather striking ways to rewrite the
integrals, allowing us to classify the quantities that cause the numerical problems either
as kinematical determinants or as the analytic continuations of kinematic determinants
that are part of the computation of the corresponding radiative diagrams. The oc-
currence of these determinants should not be a great surprise. Current conservation
and gauge cancellations should occur as a function of the kinematic quantities that are
present in a problem. This means that there must be objects that harbour great cancel-
lations (for a high energy t-channe] reaction 10 digits cancellations are not uncommon).
Those objects can usually be written either as the sum of terms with vector products
(dotproducts) and masses -—- the unstable form — or the combination of a number of
Levi-Civita tensors — the stable form — [3]. This should not be very surprising: the
electromagnetic field-strength tensor F** is antisymmetric in ¢ and v and can also be
written as a combination of two Levi-Civita tensors. Furthermore, the easiest way to
define the dual field-strength F** is through a single Levi-Civita tensor.

The combination of a pair of Levi-Civita tensors is often a way to write a determinant
as in the case of Gram determinants [4,5]. Very often the value of these determinants is
already present when the kinematic configuration is constructed. Hence we will try to
express many quantities in terms of these determinants, thereby solving most numerical
problems. In some cases we will give some examples of the cancellations that may occur
if the proper precautions are omitted. In general it is best to use the same rewrites of
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the integrals that we use to obtain a stable configuration also for analytic calculations.
Only when the answer is in a stable form is it possible to see how the answer depends on
its parameters. This is particularly important for the study of asymptotic behaviour.

In actual calculations one will encounter usually also integrals which have powers of
the loop momentum (the momentum that is integrated over) in the numerator. Such
integrals are called tensor integrals. It has been shown that such integrals can be
reduced to a linear combination of scalar loop integrals [6,2]. The reduction scheme
that is given in the literature is most suited for numerical application, but even so it is
rather ill adapted with respect to t-channel reactions. The kinematic determinants are
used in their lengthy unstable form [7]. Again the use of Levi-Civita tensors can improve
their properties considerably. We present new algorithms for the reduction scheme that
can be applied much easier in an analytic calculation. They make the reduction to an
analytic expression in terms of scalar loop integrals rather easy, especially with the use
of a computer algebra program like Schoonschip (8] or Form [9].

The layout of the paper is as follows. First we will discuss our notations and the
definitions of the various determinants we will be using after which we give a brief
discussion of numerical instabilities. This allows us then to give a rather straight forward
solution for the three-point function integral. Next we solve the four point integral,
using the reduction scheme that expresses it in terms of two three-point functions. This

algorithm [1] can be used for nearly all reactions. Finally we address the problem of the
reduction of tensor integrals.

2 Definitions and Notations

2.1 Kinematical determinants

An algebraically compact and numerically stable notation for tree-level matrix elements
can often be obtained by the use of kinematical determinants [3,4,5], which are also
called Gram determinants. These are expressions of the form

v o Pivdn
det(A) = det : (1)

Pndy "t Pntdn

One way to write determinants is with the use of Levi-Civita tensors. Most of our
formulae will not be sensitive to the choice of metric and hence be also insensitive to
the exact definition of the Levi-Civita tensors. Whenever we use Levi-Civita tensors
they will be occurring in pairs and all indices will be contracted, either with indices of
other Levi-Civita tensors or with indices of four vectors. For a numerical evaluation
one may use the convention £°12® = —gq;53 = +1 (in Bjorken and Drell metric). The
determinant of the n X n matrix A can be written as

det(A) = Py, P2a, * ** Pray €5 %27 €t T 02 - 30" (2)
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The contraction of the Levi-Civita tensors to give n! terms with n vector products
(dotproducts) each and the substitution p;-g; = Ai; gives then the more familiar form
of the determinant written out in terms of the components of A. The above form of the
determinant can be written more compactly using Schoonschip notation:

det(A) = PP g e (3)

We have replaced indices that are contracted with the index of a vector by that vector,
thereby gaining much clarity in the notation. When such an index has been contracted
it doesn’t matter any more whether the vector is placed as an upper index or as a lower
index. This allows us to use an even more compact notation with the use of generalised
Kronecker deltas:

det(A) = §m2:bn ‘ (4)

When a generalised Kronecker delta has fewer momenta than the dimension of the vector
space in which the vectors are defined the corresponding Levi-Civita tensors are satu-
rated with indices that are common to the two Levi-Civita tensors. The normalisation
is always omne:

g = gpPmompsan g (D —m + 1) (5)

In terms of dotproducts this gives the same result as when the extra indices are ignored

and the temporary assumption is made that the dimension of the vectors is identical to
the number of vectors:

fhr = MR g maean/T(R— 1) (6)
= eMPeyq (7N
= Pr@1P2°q2 — P1'92P2'q1 (8)

An example of such a kinematical determinant is the 2 x 2 determinant associated with
a three-point function: 68172 = p2p? — (p;'p;)®. In a two body decay the center of mass

momentum of the decay particles is given by p = {/—65 52 /M (with M the mass of the
decaying particle.)

With the use of the above conventions it is also possible to deal with indices in »

dimensions for a non-integer value of n. Let us assume that 4 and v are indices in n
dimensions, then

G gy = €V TIMEIMIZTN € amvamizan /D (1 — M) (9)

The occurrence of o, should be seen as a ‘formal’ notation. When this equation is
multiplied by g}, we obtain
6?1 'I;:::—: = EPI P MO 2 i qu oo Gt 43 Ol /]_"(n _ m)
= 7P g gml(n —m +1)/T(n — m)
= (n—m)e" " gy g,

= (n—m)éf bm (10)



We will need this property when dealing with the tensor integrals. Another way to
derive the above identity is cleaner from the mathematical viewpoint, but less general.
We write in analogy to (6) 67! 'P»% in terms of dotproducts and vectors with the indices
¢ and v. There will be terms with g% and when these are contracted with g% they give
the dimension, which is n. When everything is added we obtain the result of equation

(10).

2.2 Internal vectors

In order to use the above determinants for the evaluation of scalar loop integrals there
should be vectors corresponding to the internal lines. There is of course a large freedom
choosing such vectors because there is a loop momentum present that is integrated over,
which we can shift. We like to have a set of vectors s¥ that obey momentum conservation
and a quasi on-shell condition:

pi = Sf‘+1_3y (11)
s = m? (12)

1

The p; are the external momentum vectors and the m; are the masses of the internal
lines, numbered such that p; and p;;, are connected by an internal line with mass m;;;.
We have used a notation in which the index ¢ in p{ and in s} is taken modulus the
number of external vectors. ‘This means that for a four-point function sj = s{. Of
course the internal vectors s; are not really on-shell, but when taking into account that
these lines can belong to real particles in the corresponding radiative diagrams it should
be clear that we are looking at an ‘analytic continuation’ of the domain of validity of
the vectors in those diagrams.

If one tries to solve for the components of the s; one will find that in general some
components will have complex values. (One can find a frame in which one is purely
imaginary and the others are real.) This turns out to be no problem at all. Our
formulae can always be written such that the s; occur only in four vector products with
each other and the p;. All those products are real:

2 2 2
8ip1+ 38 —pi

C8it18i = > (13)
2 g2 p?
sppi = ls1-1-1 ;: — D; (14)

All other dotproducts can be reduced in a similar fashion to sums of real parameters so
the imaginary parts of these vectors never occur in a physical quantity.

When we use these vectors they are not only useful in the determinants but they
also allow a much easier way to deal with the transformation from the integral over
momentum space to the integral over the Feynman parameters [10]:

xk = | i
0 M (@2 =mI((Q+p1)? —mf) - ((@+pr+pzr+ -+ i)t — mi)
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- f d"Q (15)
Ma=s1 (Q% + 281-@)(Q? + 252-Q) - - - (Q?% + 2s-Q)
n [E1tetT_1 <1 n
/ day - dag-1 T(k - 3)

= T2
©SE T 20

P {[wl(sl —Sk)+ o+ Tp-1(Sk—1 — Sk) + .sk]2 - ie}g_k (16)

Note that the shift I# = Q# 4 (85 —s¥)x+- -+ + s after the introduction of the Feynman
parameters brings the integration back to the real Minkowski space M. So at the onset
the vectors s; give us a handy way to obtain the integrals in the Feynman parameters.
In the sequel we will encounter them frequently inside kinematic determinants because
although the s; — s; in the final integral can be expressed in terms of the external
momenta p; one single vector s; cannot be removed. Next we could write everything
in terms of dotproducts and substitute the expressions (11) and (12), but that would
destroy the simplicity of our formulae.

2.3 Evaluation

There are two advantages to using determinants. The first is the compact notation,
often allowing formulae that would be very lengthy in their expanded form to be writ-
ten on a few lines. The other advantage lies in their numerical properties. When these
determinants are written in terms of dotproducts they are notorious for their ill nu-
merical behaviour. On the other hand most of the determinants that involve external
particles can often only be known to good precision from the kinematics of the prob-
lem (e.g. near thresholds). This doesn’t hold for the determinants that involve any of
the internal vectors s;. In such a case we may have to use the liberty inherent in a
determinant to take any independent set of vectors. For instance if p; + py + p3 = 0
we can write 65152 = 218 = §RM = §R172 = ..., A knowledge of all dotproducts (p;p;,
pi-s; and s;-s;) is almost always sufficient to obtain an accurate value. We assume that
the dotproducts involving only physical momenta are known from the kinematics of the
problem. The dotproducts involving internal vectors can easily be calculated from the
masses, momenta squared and their differences. (These differences allow us to evaluate

for instance p? + s? — s2 accurately even if p? < s? &~ s2).

2.4 Numerical instabilities

There are two basic ways in which a numerical calculation can give an inaccurate answer.
The first occurs when the final result depends very strongly on the input parameters
(8f/0z > f/z). An example is log(z) for z = 1. A very small change in x will give
a very large relative change in the result. This problem can be solved by switching
to more appropriate parameters in this region, for instance y = 1 — z. It is therefore
often necessary to use an overcomplete set of variables. In the case of the scalar n-point
functions it is necessary to include all differences of masses and momenta squared as
parameters. Near a threshold even more information may be necessary.
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The second possibility concerns a poor choice of the algorithm. A good example is
the evaluation of E — p for a 50 GeV electron. Each of the elements in the formula has
a magnitude of (about) 50 GeV, but the result is very small. It is therefore better to
multiply the numerator and the denominator with E + p and work out the numerator
to obtain the (stable) formula m?/(E + p). Here there are no more cancellations and we
can see quickly that the answer is (roughly) 0.25 10~8 GeV which means that in the first
formula we would have lost more than 10 digits accuracy! The improvement of formulae
by the above method is a rather common procedure in relativistic kinematics. Another
famous example is the calculation of the roots of the quadratic equation az®—2bz+c = 0.
The standard formula z* = (b /5 — ac)/a gives one root stably, the other one follows
from zt2™ = c/a. A final example is the following series of numerical substitutions

y=1-x
z=1-y

for ¢ < 1. One should evidently keep the value z = 1 — y apart to obtain a reasonable

answer, i.e. retain an overcomplete set of variables at intermediate steps.

The above methods are used throughout the rest of the paper. Specifically, we use
determinants and roots of quadratic equations to obtain an overcomplete set of variables
with which we can calculate the arguments to the dilogarithms. The cancellations among
the dilogarithms are handled by rewriting the equations to a more suitable form, using
many of the properties of the dilogarithm [11].

3 The three-point function

3.1 Introduction

The scalar three-point function is given by the scalar diagram

lps
84 83
n & 32 \ P2
— — —
Its corresponding integral is given by
Co(mf,mg,mg,pf,pg,pg)
/ 9 (17)
M (@2 — mB((Q +p1)? — m((Q +p1 + p2)* — m)
1 l—z 1

= ?:71'2/ dz dy 18
0 0 [z(s1 ~ 83) + y(s2 — 83) + s3)° — i€ (18)
with s; — s3 = ps and s; — s3 = —p,. This integral can be solved in three steps [1]. First

we integrate over z using a special transformation. This gives us three integrals of an
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identical type over y. Next each of these is reduced to two simpler integrals over y and
these are finally expressed in terms of dilogarithms (Spence functions). The first two
steps define the quantities necessary to calculate the arguments of these dilogarithms,
the last one is concerned with the problem of adding these dilogarithms. Of course the
numerical problems may cause us to use a slightly different approach for the last two
steps.

3.2 The arguments of the dilogarithms

The first step is accomplished by the transformation ¥’ = y + az with a a solution of
rr=0r=p3+ap:

_ TP2ps + oo/ —Ay i

Pz

(19)
with
Dg =00t = plpl, — (pipia)’  (for any 1) (20)

(The choice of o, = %1 is still free.) Note that the vertex must be part of a physical
diagram, so that a must be real. (We do not encounter three spacelike momenta in
scattering and decay experiments). We change the order of integration and integrate
over z. This results in three integrals:

— _f dy log((ss — ypa)? — ie]
2(s3T — pary)
" /rxd log [(83 + pgi')z - %6]
Y 2(s3-r —pary)
+j log (-92 —Pn 1..,;.)2 - t“-]
2(s3'r — pa-ry)

37:'2

(21)

To obtain a more symmetric form we make the transformation ¥ — a(1 — y) in the
second integral and y — 1 — (1 — &)y in the third integral. This brings some order in
the arguments of the logarithms. The denominators are all of the form a(y — y;) for
¢ = 1,2,3. We can solve for the y; by substituting the » and « in the denominators.
These y; turn out to be the root of very compact quadratic equations |

Ply! — 2yipirsiy + (5;‘;1111) /D=0 (22)
1 i 9
vi= 3 (Pi'3i+1 oLV —Az) (23)

with

(220) 1Ay = 52y, - 6523/ (24)



Finally we add extra terms with y — yi, which add up to zero, to cancel the residue of
the pole at y; [1] The result is '

C'o 1 R I

— log[(si+1 — yipi)? — i€ ) (25)

We have to choose the labeling of the external momenta such that p2 is nonzero if
we want to use the above formulae (see eq.19). But if one of the p? is zero it is smarter
to call this momentum p» anyway and to not even bother about introducing a. We can
integrate directly over y in equation (18). This case is sufficiently simple so that we will
not consider it in the context of this paper.

From here on there are two ways to proceed, depending on how bad the numerical
problems are. Proceeding normally one finds an expression with 12 dilogarithms. There
is however one source of instability which is a result of the addition of two integrals to
form the first integral in equation (21). If we do not combine those integrals we will
have four integrals which may show cancellations in pairs. This happens for instance in
the vertex correction to eey. The loop with two €’s and a Z, in it becomes problematic
when p? is small and spacelike. pl = ~10-2°GeV? gives a loss of 6 digits. This would be
bea.rable if it were the only source of problems, which it isn't of course. In this case we
have to keep all 16 dilogarithms. The choice of the a becomes rather important here: if
a < 0 or a > 1 the integration may give rise to unnecessarily large similar contributions
with opposite signs. All these numerical troubles will manifest themselves in the form of
pairs or quartets of dilogarithms the sum of which is much smaller than the individual
terms. This is discussed further in 3.3.4.

In the normal scheme the next step is to find the roots of the arguments of the
loga.rithms in equation (25). These roots, called z¥, are defined by

pl 1 231+1 ‘piz + 31+1 =0 (26)
Pi-Siq1 £/ —Ohisiia
g = 3 Bioit (27)

The special case p} = 0 is trivial, but should have been treated differently anyway
as mentioned before. For stability in later equations we also need expressions for the
overcomplete set 1 —y;, 1— 2, yi—2E, 2yi—27 —zF and y; —22F. These follow naturally
from the definitions, but have to be rewritten so that their evaluation does not cause
problems.
¢ 1 — y; is the solution of pH1 —y)? + 2(1 — yi)pirsi + (6;‘;'_“) /A, = 0 with the
sign —04. It is part of the argument of the dilogarithm (see equation (29)) and
can be much smaller than y;. For instance in the diagram eey with two €’s and a
~ with a small mass A for regularization in the loop, y, = 1 — (A/m.)?.

o 1— z follows from p#(1 — Z; ) +2(1 ~ 2; )p, s; + 8¢ = 0. This value is needed
when cancellations among the d110gar1thms have to be c1rcumvented It can be as
small as 1 — y,.



¢ One of the y; — zF is stable, the other one can be obtained accurately with

(i — 2 Wy — 27 ) = 85t /(p} ) (28)
Note that the 3 x 3 determinant }iFi+17i+t = §103% is unique. This quantity, if

not calculated this way, would have given problems in many vertex corrections.
In the same infra-red divergent diagram eey with the two e’s and a < in the loop,

(yi — 2 /(y;i + z{) is of order (A\/m.)*.

o 2yi— 2z — 2] = 20085521 /(p}V/~ D) and y} — 227 = —y; F2¢/— 85531 /p}. These

L PiPi+i
combinations are needed in some rare cases.

It should be clear by now why we are using the generalised Kronecker deltas and
the vectors s;. All numerical problems can be concentrated in a very small number
of these determinants, which are functions of physical quantities, and the formulae are
very compact.

3.3 Cancellations among the dilogarithms

With the roots introduced in the previous section we can split up the logarithms in
equation (25). If we assign 2z — 2} T ie we do not cross any branch cuts. This leads

to the functions

R(yt's 28y :i:ze)

1 g
jo Y (log(y — 2 + i€) — log(yi — 2 % i€))

Y—u
= Liz(e1) = Lis(c2) + 71 log(e1) — n2log(ez) (29)
with
a = yif(yi— 2z tie) (30)
ez = (3 —1)/(yi — 2z L ie) (31)
m = n(—ztie,1/(y; — 2 £ ie)) (32)
n2 = n(l—z *ze, 1/(?)‘.’ — z; % i€)) (33)

The dilogarithm Li, is defined by

Lis(z) = —/:wdt: 52

n=1

(34)

n?

(the last equality holds for |z| < 1 only) and the function % compensates for the cut in
the Riemann sheet of the logarithm:

log(a) = log(a) + log(8) + n(a, b) (35)



If the parameters y;, 2; are real the n-terms vanish in equation (29).

The dilogarithms we obtain by the above methods all have the same overall factor.
The ways we obtain these dilogarithms make it possible that we add big contributions
to some integrals and subtract them from other integrals. These big contributions will
show up in the dilogarithms and the logarithms. It is therefore quite normal that there
will be dilogarithms of which the values are nearly equal but the sign is opposite. This is
the case when the arguments of those dilogarithms are close to each other, which in turn
often occurs when the overall factor 1 /+/—A47; is large. In an s-channel reaction this is
the case when there isn’t much phase space for the reaction. In a t-channel reaction this
is the case when the scattering is in the forward region which happens very frequently.

For such a pair of dilogarithms we can use some identities [11] that leave us with a
formula in which no individual term is much larger in size than the sum of the terms.

3.3.1 Transform the arguments

The first step is to transform the arguments of the dilogarithms to a region near zero.
If |z|,{1 — z| > 1 we use

71.2

Liy e) = ~Lig(z) - %logz(—a:) -5 (36)

to map the arguments ¢; to ¢} = 1/c; near 0. In case that Re(z) > 1/2,]1 —z| < 1 we
use

Liz(1 — z) = ~Liy(z) ~ log(z) log(1l — =) + %2 (837)

to map to new arguments ¢ = 1 — ¢;, which can be calculated accurately if z and 1 — 2
are known. This transformation also circumvents many problems associated with the
singularity in the derivative of Liy(z) for = 1. The terms w2/6 should be kept apart
as they often cancel each other. This is best done by keeping the multiple of 72/12 in
a separate integer. If there is anything left in the end it can be added to the rest. This
avoids spoiling the accuracy of the intermediate results.

An illustrating example is the scalar three-point function occurring in the vy vertex
with two e’s and a W in the loop and p? small and spacelike. In this case the value
p? = —1078GeV? gives y1 = —miy /(2m.\/—p2) = —6:10, 27 = m./\/—p2 = 5. We see
that the arguments of the dilogarithms ¢; and ¢, in equation (29} are both very close

to 1, however, ¢, = 1 — ¢, and ¢j = 1 ~ ¢, are of order 1072, which is also the order of
magnitude of all other dilogarithms.

3.3.2 Arguments close together

Next we notice that within this region there are cancellations if the transformed argu-
ments are close together, ¢] & ¢;. First we consider the dilogarithms, next the logarithms
resulting from the transformation or the 1 terms. Two cases have to be distinguished:
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.1. If the (transformed) arguments are close together but not small we use the Hill
identity! in the form:

Liz(ab) = Liz(a) 4 Liz(b) — le(al(l ab)) Li?(zﬁ;—i;—))

1- 1-5
_l°g(1 b)lg(l-ab)
- (1 —a,1/(1 -~ ab))log(a) — n(1 — b,1/(1 — ab))log(d) (38)

with a = ¢] and b = ¢}/c| ~ 1. We then obtain

1 Cz
+ log(c3/c}) log(1 — c)) - (39)
Some of the arguments of these dilogarithms have a very simple form when ex-

- pressed in the original parameters y and 2. These are shown for each of the three
possible transformations:

o) T = i - )+ 1 (A=) i, (L)

( 1 (11— c/c) 1
' e _f I=_ 1 2 1
ei=¢: 1-cy/e) " T—d, =1z
m1e: 1—difed = 1 1-afa _ _1
4 C:--——l/c|. 1 Cz/Cl—l—y '( '/') 1-7c’2 .-1—'2' (40)
1 c{l—cs/fe 1
— 1 — — e = 1 2/ -
Lc:—l [T 1 62/01 > 1—C’2 1-— 2

2. In case that ¢; € 1 the result is of order ¢j(1 — ¢3/c}), but the terms in (39) are
only of order (1 — cj/c}). However, a Taylor expansion is feasible in this region:

Lia(e) - Lin$) = 32 % (1- (2)) @)

n=1

with {1 — (c5/e})"} = {1 = (/)" 1} + (1 — &y /b )y /)" ! easily calculated.

The logarithms can be similarly rewritten. If there has been no transformation the
expression

m log(e1) — nylog(ca) = nalog(ca/er) + (m — 172) log(e;) (42)
is stable. In case we transformed ¢! = 1/¢; we use

‘ 1. 2 1. 2

m1log(e1) — nzlog(¢z) — 5 log™(—e1) + 5 10g*(—¢2)

= log(cy/<}) (s + log(~<}) — 5 1oB(ch/<})) + (12— m) log(~<) (43)

lthe n-terms arise from the possibility that @, b and ab are not on the same Riemann sheet. They are
often not mentioned in the mathematical llterature
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The transformation and n-terms for ¢; = 1 — ¢; become

m log(c1) — 2 log(cz) — log(c1) log(1 — ¢1) — log(cz)log(1 ~ ¢2)
= log(c1) (log(ch/ 1) +m1 — n2) + (log(ch) + m2) log(ez/c1) (44)

with ¢z/¢; = 1— 1/y. In all cases it is assumed that the small logarithm log(c5/c}) does
not have an associated 1 term, this should be checked for.

The importance of the cancellations between the dilogarithms can be illustrated
in the same vv+y diagram. If we give the neutrino a small but finite mass we have

- 2 2 - 2 2 L

ys & zy & —m¥/m?, y3 — z; = —miy/pi. The original arguments ¢,z are thus very
large (about p?/m?), but very nearly equal: the sum of these dilogarithms is proportional
to mim./m}y,, which of course tends to zero as my — 0.

3.3.3 Special cases

Finally there are a few special cases, mainly for use in transformed four-point functions.
In case an argument c; is close to —1 (but not close to the other argument) we use the
Hill identity with z = ¢;, ¥y = —¢;"! to obtain

] . . [2y—=z ) 2y -z
Lig(z) = Lis(—1}+ Li ( — ) — Li, (— )

— Liz (2y — z) +log ( ) log(1l — 2y + 2) (45)

Y-z
In this equation Liy(—1) = —#2?/12, two of these terms may cancel a 7%/6 from the
transformations. The argument 2y — z is obtained from 2y — z*t — z~, which is known.

Another problem may occur if the roots 2 are complex. As they are each others
complex conjugate and all functions are analytic we only need the real part of the
dilogarithms, which may be much smaller than the absolute value. In this case the
evaluation of the complex dilogarithm should be done with great care.

A similar condition comes up if both roots are (almost) equal and the arguments of
the dilogarithms close to 2. In this case we also do not use the imaginary part. The
real part is given by

Liy(2 —z) = w2/4 — 2%/4 — 2%/6 — 52*/48 — 2°/15 — . .. (46)

with 2 — ¢1 = (y — 22)/(y — 2), ca = (1 — y) — 2(1 = 2))/(y — z) known accurately.

Finally, there is one region in which there are cancellations between two R functions.
This occurs if |¢°| > |yil, for instance in the vertex correction to v*y*X, X light, with
three W’s in the loop. Then

. i . Yi
L:z(y‘_ Ezf) * le('y:‘ - zi_) (47)

is almost of the type
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Lia(z) + Lis(—z) = %Liz(mz) o] < 1 (48)

We thus transform the second dilogarithm with this identity and treat the resulting
cancellation with the Hill identity to obtain

R(y,z*) + R(y,z") = R (Y, fyiy) ~R (Y akal Y)

e (G25) - (659)) @

withY = (y—27)/(2y — zt — z7).

3.3.4 16 dilogarithms

In case we need to use the formulation with 16 dilogarithms exactly the same methods
are used to circumvent the cancellations between two R functions.

C 1 _ _
3'_7,05 = /A, (R(yl, ') — R(y1,wi) + R(y1,27) — R(y1, wi)

+ (w1, 1, 21 — W, Ya, za)) (50)

with wf = (1 - 25)/(1 — a), wi = 25/a, The differences (w¥ ~ zF) can be calculated
accurately for special cases. The dilogarithms cancel in groups of four. They can be
combined differently if there are only pairwise cancellations, otherwise the Hill identity
or a Taylor expansion are used:

R(ys z) - R(y,‘w)
_ R(w—y,iw—y)_R(w-—y’l—zw—y) (51)
‘ w2 yw—2z w—z l-yw-—2=z
l—w 1-—-w 1—-w w—1 w— 2z
R(y z )-—R(l—w,zz_w)—log( ” )log(w_y) (52)

- SR (-0-9) (- =) (59

n=1

3.3.5 Conclusion

The expressions needed for the (new) arguments of the dilogarithms and logarithms can
all be calculated accurately if one knows accurate values for the overcomplete set y;, 27,
1—yi, 1— 28, yi— 2f, 2y: — 2f — 2] and y; — 22

3.4 Complex arguments

The arguments of the three-point function may be complex. This occurs when the finite
width of the internal particles is taken into account or when « is complex due to an

13



unusual kinematic configuration. This last configuration may occur when calculating
three-point functions with transformed momenta for the four-point function (see sec-
tion 4). In case of complex parameters some complications may arise. These stem from
the careful bookkeeping we have to perform to keep track of the Riemann sheets.

The main problems occur when splitting up
log|(si+1 — ypi)? — ie] = log(p*) + log(y — 2 — ie) + log(y — 2 +i€)
+((y - 7 —i€), (y - 7 +ie)) (54)

This last term gives rise to additions 2anlog(l — 1/y:) to the sum of dilogarithms.

The treatment of the dilogarithms is analogous to the discussion in section 3.3, except
that now the 5 terms cannot be ignored. The cancellation between the imaginary parts
of many terms is no longer exact and has to be calculated numerically. Great care has
to be taken to distinguish when the complex part of the argument is really zero, so that
the ie prescription has to be followed, and when it is just very small.

4 The four-point function

The scalar four-point function is represented by the diagram

Pq\ 34 /Pa
81 _l_ . T 383
P / Sg _\Pz

in which we have introduced the vectors s; again. The corresponding integral is

Dg(mf,mi,mg, m§1P§=P§,P§aP3,P§,P§)
= [ a'Q
(Q* - mH(Q + p1)? - m((@ + p1 + p2) — m)((Q + 1+ p2 + pa)” — mY)

= in? /dm1d:cgd..~:3dw46(1 — Ty — 2y — 23 — T4)0(21)0(22)0(z3)8(z4)

Ly =2
X {[.’)3131 4 989 + T383 + 32484]2 - ZE} (55)

. g 1 i—-z 121 —T2
i /da:l/ d:ngj dzra
0 o 0

x {[1‘1(31 - 34) -+ .'1:2(32 - 34) -+~ .’1:3(33 - 34) + 34]2 - iE}_2 (56)

In the &bOVB formula 81 — 84 = P4, 82— 84 = —p3 — p3 ancl 83— 84 = --pa.

If we were to use a transformation of the type that introduced « for the three-point
function things would become rather complicated. We would still have two integration
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parameters left and we would have to use the same trick once more on each of the
terms in these integrals. Luckily there exists a more elegant transformation that can be
used in nearly all cases [1]. After this transformation has been applied one integration
becomes trivial.- Once that integration has been done we are left with the equivalent of
two three-point functions.

4.1 The transformation

We use the transformation

! !
Ay _ A

a4 T N (57)

Ty —
) §=1

with z4 = 1 — z} — 4 — 24, no summation over ¢ implied. The Jacobian of this trans-
formation is

J = |A1AA3AN Y (58)

This transformation keeps the boundaries fixed, although the integration region changes
from inside 6(z,)0(z2)8{z3)8(z,4) to some region outside if one or more of the A; is
negative. For the moment we only consider the case A; > 0. In anticipation to the full
result we drop the absolute value signs.

- Applying this transformation (57) to (55) we see that, apart from an overall factor
A1A243A4 it is equivalent to the substitution s = A;s;. We like to choose the A; such
that '

(sh—s)" =0 (59)
(sh—sh)-(sh—s) = 0 (60)
(sy—sh)-(sh—sp) = 0 (61)

This makes the integral over x4 trivial. There is however one condition. The transfor-
mation can only give rise to physical vectors if all A; are real. So let us have a look
at the conditions that the A; have to fulfill. We will express everything in terms of
Ajs, which is only a scale factor. In that case the equation for A3 is a plain quadratic
equation and the other equations give a linear expression that expresses the other 4; in
terms of A3 and A4. Thus the solution is real if 6533 < 0. This implies that the vertex
(83, 84, p3) corresponds to a physical process. We could have used any permutation of
the vectors s; when choosing which one is s3 and which one is s4. Four permutations
correspond to a choice of one of the four vertices, the other two correspond to the s and
the t channel. It is possible to find diagrams for which all six §’s are positive, but t < 0

or 8 > (my + m3)? are already sufficient to obtain a real solution. In case no vertex is

physical the projective transformation cannot be used in its current form. We will not

consider that case here and from now on we assume that the s; have been permuted in
such a way that all A; are real.
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If §22% = 0 there are some problems in the common case that s2 = s2, p3 = 0, as
then A; = Ay = 0. By regularizing mq = ma(1 + &) this limit can be taken.
The equations for the 4; in the form (59)-(61) are not suited for numerical evalua-
tion. Instead we use
A7%82 — 247 ATVssa + AT (635%) " /633 =0 (62)

8394 9334

_ 3;84 + 036:;::/-\ / —6:2:: _
A 1 __ A 1
i ) 1

4

(63)

The variable o3 takes the values £1.

The new vectors s, define new vectors pi; = s; — sj. The transformed dotproducts

(8}-s5, pi;-sh and pl;-ply) can all be expressed as solutions of quadratic equations having

determinants as coefficients, with the exception of some of the pj;-p.

3:- . 5;- = A;Aj.s,- * 85 (64)
siepy = 8 (85— ) = AidjAcBijk (65)
with Bj;x a solution of & quadratic equation

_ , 2
siBija® — 2654 B + (6204,85%,.) /855 =0 (66)

buse — aobiin % /\[—bun
B,‘jk-—— 3%k 3 11;234 334 (67)

4

There are of course only six non-trivial dotproducts pi;-pj,. They are given by

P - P = (87 = 85)+ (8% — s1) = Aid; A AiCiju (68)
1 By gpp v P L8asy vV 84 Lp 54 &3 84
C!JH' = -8_3 63,‘ 3565" LT} (‘543463354 - 683 3‘633 34) /68334

bosst s, (51055 + s2653) /O3 | (69)
The equations for p},* and ph,° simplify to the form
PiaPia = AiAcALSL 30 /6530 (70)

This formula is also correct for p},-ph,. The choice of the root for Aj is important to
keep the expressions for the general case in a stable form.
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4.1.1 Reduction to three-point functions

In case all 4; > 0 we integrate over x3. This gives two terms each of which has the form
of a three-point function integral.

2
o s5? — 5§

{CO( 1!32133) 00(3;,3'2!3:1)} ‘ (71)

As we know all transformed dotproducts we can evaluate these three-point functions
with the methods described in section 3. The numerical problems are in general a lot
worse than in the case of three-point functions with physical parameters, but mostly
manageable in our algorithms.

Cancellations between the three-point functions occur when |s5? — 5,3 <« s4?%, 5,2
Because

sl = 203A3A4\f— 6222 (72)

this happens when the (33;34,p3) vertex is near a (pseudo) threshold, [6235¢] < sis2.
Common situations are s & (m; + mg)? or t & (m; — my4)%. To accurately calculate the
difference of these three-point functions we transform again as in section 3.3. The small

parameters now are

1—efef? o yfPal —yPa (73)
1-c8/ef) o« (11— -2~ 1 -1 -2 | (74)

The superscript refers to the s; that is included in the three-point function. These small

parameters can be calculated in a straightforward manner from the definitions (23) a,nd
(27):

# '3’
y&"”zl*(“) _ y$4)zlt(3) = —o, P3 2' zla: (75)
. VARTAY)
4)- . 3(3 1
.ygajzzi( '~ yg!)z;t( ) = ,zz{aa (P’zzpls -$4P1-85 F P1-PaPy 34\/ —b23

P2

::;:1 (\/-—523 - \/ 824 )/\/ A
+ (;p":,'-sf1 —8y3 + p'g'sf;(\/—523 - \/"524)) } (76)
'y:(,s)z;(‘n - ygl)zg‘(a) = p122 {C'a(Pf;zP:s 31?1 31 :FP1 P4P3 31\/ —&31
+ 8 (=t = /=0m) ) [\~
+ (pé-.si —631 + pISI'S;. (\/—(531 - \/—641))} (77)

The dilogarithms are rewritten as in section 3.3.4:

R(y,z)® — R(y,2)" = R(A4y, Az) ~ R(B(1 —y), B(1 - 2)) (78)
17



with
@ _ L
_ Y ol
A = O @0 (79)
2 — 4@

=y =z = (1 ) — )

B =

(80)

4.1.2 The overall factor

The AY, which is the same for both three-point functions, can be reduced to the 4 x 4
determinant of the untransformed parameters

' PlePhy
Az - 61’;4”;4

= ALAL(Gnuuenpu — (6nen)) [(6nn)
= A%A%&””’“‘/aﬁ"“" (81)

g1 3828384 I

The complete overall factor of the dilogarithms is thus
A1A2A3As  0a — da03e(A1)e(A2) (82)
' — s 2~y 4fonugny

(e(z) = £1 depending on the sign of z).

We can see that if at least one of the six three-point vertices is unphysical (which
will most often be the case) the s; have an imaginary component, thus §J!5232¢ =
—(e7*1%*)? > 0. In that case A; < 0 and the transformed three-point functions are
physical. However, there are diagrams in which the s; are real so that we have to

calculate three-point functions with a complex a.

In general, cancellations among the dilogarithms will occur when the overall factor
is large, i.e. €%%%* is small. Contrary to the overall factor of the three-point function,
this overall factor does not have a simple kinematical interpretation, although it is of
course also zero when three p; are linearly dependent, for instance when scattering in
the forward regiomn.

4.1.3 Extra terms

If one or more of the A; are negative the integration region of the corresponding z;
changes from 0 < z; < 1 to (#; < 0) U (z; > 1). Adding and subtracting the integral
from —oo to ++oc one regains the original integral without the absolute value on the
Jacobian (71) plus some extra terms, which arise from this (simpler) integral. They are
given (up to the overall factor) by

R,;J' = :l:9(—-A,-A_,—)i1r log(-—ka_Lf;) (83)
Ye — 2%
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with k the integral in which both s} and s; appear and the minus sign is taken when
this integral is part of Co(s!, 53, s}). _

There is one extra term which appears when A344 < 0 because of the interplay
between the pole in zj at infinity after the projective transformation and the integration
region which reaches out to there.

S = 0(—A3A4) {E(AlAz)(Sn + 514) - 29(—A1A2)Sg4} (84)
with | |

fl — A
Sy = —iquog(—p‘ i 2) (85)

A derivation is given in [1].

5 Tensor integrals

In realistic calculations we are rarely confronted with scalar loop integrals only. Many
terms may have powers of the loop momentum in the numerator. Such integrals are
called tensor integrals. These can be reduced to scalar integrals but the reduction scheme
is rather involved. One way to do this is given in [2] and it has been programmed by
M. Veltman into the program FormF. An algebraic version of this reduction scheme
has been implemented in Reduce by R. Stuart [7]. This method of reduction suffers
from some shortcomings though. First of all it is best suited for numerical implemen-
tation. This means that the numerical value of the scalar loop integrals is to be used
to derive numerical values for the tensor integrals. These are expressed as tensors with
numerical coefficients. In addition the results are not very accurate if the evaluation of
kinematical determinants suffers from numerical instabilities when expanded in terms
of dotproducts.

Here we present an algorithm that is better suited for an analytic reduction of formu-
lae in terms of scalar loop integrals. In addition the instabilities have been concentrated
in a number of determinants so that the formulae are numerically stable, as long as
there are no cancellations among the scalar loop integrals. We will start with the four-
point function tensor integrals in four dimensions as — amazingly enough — they are
easiest. Next we discuss the extensions necessary to cover n dimensions and the three-
and two-point integrals.

5.1 Four-point functions in four dimensions

Before starting the real work we introduce some new notations:

e e
2= [foyw o, ®
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with

Ny = Q°—-mj

Ny (Q +m)* —mj

Na = (Q+pr+p)’—mj

Ni = (Q+pi+p+ps)—mi | (87)

I}

Similarly we have
Q@ = ot t (88)
N1NyN3Ny
and the integrals with higher powers of @ are written analogously. In eddition we use
some of the quantities of the previous chapters and

A 6?1?21’3 (89)

Pip2p3

We may also be rather sloppy with the uncontracted upper and lower indices as even-
tually all indices are properly contracted so their nature as upper or lower indices is
unimportant. The final result will be identical for Pauli metric and for Bjorken and
Drell metric.

We start with the expansion of the determinant

nppE - QP Q Q
Smma = @"Ba— PSR — R8T — PaSL s (90)

which gives the following decomposition for #

Q* = P* + v*v.Q%/As (91)
with

Pro= Ten06950 /A,

vﬂ . EPIP?P&P (92)

From the last definition it follows that

vhu, = As (93)
The first integral becomes

Q" = P* +v"v.Q7/As (94)

From the definition of v it is rather easy to see that the integral v,Q is zero [12]. The
integral @* is after all a linear combination of the p{’. For two powers of @ we obtain

Q*Q” = PP + (P 0" v,Q% + P v*0,Q%)/ Az + v“vyvang;Qﬁ/Ag (95)
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Again a study of the possible tensor structure reveals that the terms linear in v-@ be
zero. The use of v#v¥ is a deviation from [2] that pays back handsomely (this reference
uses g* to define their structure functions). We contract the indices y and v to fix the

(v-Q)? integral:
Q@ = PP+ v93Q.Q°/As (96)
It is easy to express Q-2 in terms of denominators (Q* = N; + m?) but we will Ppresent

some more useful relations shortly. The final expression for the two powers of Q is
therefore | :

Q""QV = 'P.WPV + U“Uy(M)/Aa ' (97)
The cubic and quartic expressions are derived analogously and yield the equations: |
Q@ Q= PLPP’ + (vhu, P’ + vhu, P + v'u, PH)(Q% — P?)/As (98)

(again the odd powers of v-Q give zero trivially).
Q"Q"Q°Q° = P*P*P*P°
+ (v*0, PP 4+ v*v, PP + v u, PP’ + v v, P*P7 4 v v, P*P? + v°v, P*P")

(@ — P/ Az + v v, v°v,(Q* — P?)2/ AL (99)

To obtain the integrals with v-Q one has to consider also the integrals with @*Q* and
Q*Q* Q" respectively without expanding the Q2. These are compared to the cubic and
quartic expressions with one contraction. The last term in the quartic expressions is
found after contracting p with v and p with ¢. This gives (v-Q)* = (Q* — P?)?A%

In principle all terms in the right hand sides of the above rewrites of the tensor
integrals can be expanded easily in terms of whole denominators, so we obtain either
scalar four point integrals or tensor integrals with fewer denominators. In practice this
can be done in several ways of which we show one. Here we worry only about P#, the
treatment of the (Q* — P?) terms is done in the appendix. We rewrite:

AsP* = Qi) B0 + Qpabhl ™ + QpabT 2k (100)

Pipzp3

Now we replace @-p; by 3Ni11 — 2N; + s1-p; to obtain:
1

AP = SEsAsE
1
~ R CHNAIER — NaSRER + NaSp s - N7 3% (101)

The evaluation of P? could also be done with the use of the above equation, but it is
better to consider Q% — P? as a single object.

The reduction of the four-point function tensors integrals usually gives no problems
in the limit that the dimension of space time is taken to 4. The only exception is formed

by the integral with four powers of the momenta in the numerator. This integral has a
divergent part, so we have to keep track of its n dependence. In that case we have to

readjust equation (91). It is no longer possible to use the vector v so we have to write
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Q¥ =P+ wy/As _ (102)
with

wh = §nmek (103)

pPip2pP3V

One may note that w”/Aj; is a projection operator into the space perpendicular to p;,
pz and ps.

We consider the n-dimensional equation for Q*@" first. Although this is usually not
necessary it illustrates the differences with the 4-dimensional case. The equivalent of
the last term in equation (97) is

wzwf?/Ag (104)

This can only be proportional to w**. The coefficient can again be found by contracting
with g,,. (Another way of looking on this is to remember that Q.Qs can also be

expressed in terms proportional to p?p? and g“'@. Only this last term can lead to a
result that is not zero when contracted with w).

Next the contraction w¥ gives the value n — 3. Thus the equations (97) and (98) can
be madified by replacing each pair v#v, not contracted with Q by w**/(n — 3). In the
only interesting case (99) we have to make one slight modification to the last term to
obtain

Q'Q"Q°Q” = PPPPP?
+ (WHPPP? 4 whP P 4 W PYPF 4 wPPEP 4w PEPP 4w PHPY)
(@ = PY)/((n — 3)As)
HwH W + whw” + ww?)(Q = P2/ ((n — 3)(n —1)A2) (105)

5.2 Three- and two-point functions

Now we are ready to attack the three-point functions. These are conceptually identical
to four point functions in n dimensions. Specifically, the decomposition of the perpen-
dicular term must be done in terms of a tensor like w!. We will write this tensor here as
a generalized Kronecker delta and keep the notation with the w reserved for the tensor
belonging to the four point function. We now have

Q¥ = PH + 6275 A, (106)
Pt = 8 ol A (107)

This leads to the following forms for the integrals (in this section Q* refers to the
three-point integral [d*Q Q*/NyN.N;)

Q@ =P (108)
QUQY = PP+ G b G/ A (109)
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This last term is proportional to 65222, The coefficient follows again from the contrac-
tion of ¢ and v.

QLQY = PUPY+801(Q° = PE/((n - 2)A,) (110)
Q'Q°Q° = PUPYPL 4 (BRUPP + 02N PY + éiigﬁP”)(Qz — P/ {((n - 2)Az)
(111)

The reduction of the P to NN; and constants is analogous to the case of the four-point
function and gives

AP* = 855,645 — S(NiBAT + Nobl 2 + Nogh 1) | (112)
The two-point function can be treated the same way:
Q" = P*+ 85/ (113)
PY = p'pQ/p’ | (114)
so that
Q" = P (115)
Q'Q" = P'P'+(Q°—P")ér/((n —1)p) (116)
and '
p*P* = ps.p - -;-(Nx — Na)p* (117)

Of course this does not make sense when p> = 0. In that case we express the tensor
integrals in a sum of all possible tensor structures with undetermined coefficients:

Br(oasgasg) = p"Bn ' (118)
B}*(0,s1,53) = p"p"Bn+¢" By | (119)

These are solved for by contracting these equations with p, and g,,. As many equations

now vanish it is necessary to consider contractions of up to B4’ to obtain the coefficients
of B}”. We obtain (see also [7])

Ao(s3) — Ao(s])

BO(O!S%FS%) = 2 2 (120)
92— 31
2 53A0(s2) — s2A0(s?)  Ao(sd)
B¥0,s%,52) = pt|=222 0\~2 1 1/ _ 02
o) = (2Rl 12

8  s?(sZAo(sd) — s3Ap(s?))
B# 2 .2 — oV 1i°2 2 142042

2 s+ 82 n 1
A 2 _ 2 1
* ‘W( n+2(sg-sg)2+n+2sg_sg))

oo (LAALD L)

8% — 52

(122)
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The final special case concerns not only p* = 0 but in addition we take m; = m,. In this
case we have to study tensors with four powers of @ in the numerator before we have
the equations that fix the form factors in the tensors with two powers in the numerator.
The result is:

2 23y _ n=2 2
Bo(0,5%,s%) = —57Ao(s") (123)
B{(0,s%,s%) = —%P“Bo(O,sz,sz) (124)
. |
By(0,s%,s%) = (%p”’p"+ns_zg““)Bu(O,sz,sz) (125)

We have expressed these equations in terms of the s? rather than the masses to minimize
the dependence of these equations on the choice of the metric.

5.3 Five- and higher point functions

Five and higher point tensor integrals are easier than the previous cases [12]. As they
will usually occur in such a tensor combination that they are finite one may use 4-
dimensional methods. It is easiest to just use the Schouten identity

Qﬂsmmpam — pl,Qeﬂmpam + pz,QE;Pmmm +p3.QEP1P2#P4 + p4,QEP1P2PaH (126)
with p1, p2, p3, p4 any independent set of momenta. This means that
Q' ="P* (127)

without extra terms. The higher order tensor integrals are thus only products of this
‘P. However, one can not define internal vectors s; for five- and higher point functions.
The dotproducts s;-p; can still be seen as a short-hand notation for & combination of
masses and physical dotproducts; alternatively, the s; can be seen to exist in a higher-
dimensional vector space with only the projection on the physical four-dimensional
Minkowski space having significance. We thus proceed as usual to obtain

Ph = (8,-pre"PPP — 51 PagHPIPIPA L g pagPPIPIPL _ g . gHPIPIPS) [PIPEPIPA
- .;.(lenmpam — Nyghltmlme | Nocuplpzteslon _ N cumpipata)
+ Nssummpa)/emmmm (128)

6 Conclusion

The use of the on-shell unphysical vectors s; in combination with the use of kinematical
determinants offers a compact notation and a good starting point for calculations of the
scalar one-loop integrals. The arguments of the dilogarithms can be expressed directly
in a small number of these determinants. Special simple cases can easily be derived from

24



our general formulae by just working out the determinants analytically. Cancellations
among the dilogarithms have almost all been circumvented using its algebraic properties.
The resulting algorithms have been implemented in a Fortran program.

The tensor integrals can also be reduced to relatively compact expressions using
the determinant notation and the vectors s;. It is very easy to program this resulting
reduction scheme in a symbolic manipulation language like Form.

Nearly all our formulae are metric independent as the masses have been absorbed
inside four-vectors. The main metric dependence that is left concerns the definition of
the denominators and the definition of the s; (12). There is a relative minus sign for

each N; when Pauli metric is used. In addition one must be careful about the sign of
1€.
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A Appendix: An economical reduction scheme

If the equations for the reduction of tensor integrals are used as they are given in the
text they may lead to an explosive increase of the size of the expressions when the higher
powers of ¢} are involved. It is therefore better to study the equations carefully. We
here give a reduction algorithm which limits the number of terms as far as possible.

Given a tensor n-point function the following recipe is followed:

1. Replace the vectors @ by P using equations (94)—(99) and their counterparts for
the 3- and 2-point functions.

2. Collect the terms with (Q? — P?) in the numerator.
3. Use equation {101), (112) or (117) to expand the P as far as needed.

4, Replace the remaining P by ¢J.

One is then left with (n-1)-point tensor integrals, scalar n-point integrals and integrals
with only powers of (Q? — P?) in the numerator, and the whole scheme can be repeated
for the (n-1)-points tensor integrals. We will now elaborate on the different steps.

A.1 The terms with Q? — P?

After the substitution of @ by P with equations (94)-(99) for the four-point functions,
(108)—(111) for the three-point functions and (115)-(116) for the two-point functions
we are left with terms proportional to (@% — P?) and to P. The reduction of the first
kind of terms is discussed here, the last kind terms is handled in section A.2.

The first problem we encounter is that the vectors P are different for the different
n-point functions. However, we note that in all equations the combination Q% — P? is
proportional to wg , with w defined in equation (103) for the four-point function. We

show this here for the three-point function:

wd/As = wieRRLQ? — P?/((n - 2)AsA,)
- T3 p (129)

n—2——

In general one can find the relevant rewrite in terms of wg by contracting the left hand
side of the tensor equations with w,, (and twice with a w for the four powers of ) and
noticing that w}P, is zero in all equations.

The scheme that we like to apply now is to replace all occurrences of @* — P? by
wg . These factors don’t need any modification when we go from higher point functions
to lower point functions, whereas the vector P is meant for a particular integral only,

After all substitutions have been applied these integrals can be written back in
terms of Q% — P?, with the P defined for that particular integral. The reduction of
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those integrals is given below:
Q? — P? ' dam S 51'P1 }
—— = [d" - 130
Jra NN, Jra NN, V3PN, T 2pIN, (130)

2 _ p2 §a1pipe b5 5a1( P1-r2) §um
fanQ P — /an{ J1p1pe + Pip2 + P1P2 + P1p2 }

N1 N3 N5 AgNiNy Ny  2A3N, N3 2A;N N3y 2A,N, N,
(131)
jan p2 _ fan :igigg;;: + 6;’?%% — 6;:2%
N1N2N3N4 A3N1N2N3N4 2A3N2N3N4 2A3N1N3N4
L _famm  umm | (152)
2A3N1NoNy  2A3N N N3
and
[rQ@mPY ol BERRQ@ 7Y
N1N2N3N4 A3N1N2N3N4
, (- EER@ P (n—3)6umn(Q? — P)
2(n - 2)A3N2N3N4 2(n - 2)A3N1N3N4
(0= 9BRQ P _ (- ERERQ P
2(7’5 — 2)A3N1N2N4 2(n - 2)A3N1N2N3

In this last equation each P is already the proper P of the integral in which it occurs.
This means that one can use (131) directly for substitution in (133).

The derivation of these last four equations is done by substituting one power of P
after which some study of the terms with the N; reveals that they are all zero when
integrated over with the exception of one (it has to be shifted over p;). Then the
substitution of the second power of P and a minor amount of rewriting gives the above
equations. |

A.2 The terms with P

The terms with (Q? — P?) having been reduced to scalar integrals we now turn our
attention to the other terms with powers of P.

In order to minimise the number of terms we reduce the tensor n-point integrals to
tensor (n-1)-point integrals only and avoid lower point functions. This means that we
first replace exactly one power of P* using one of the equations (101), (112) or (117).
Next the terms in which there only remain (n-1) denominators N; left are left alone,
whereas we keep substituting one power at a time in those terms that didn’t obtain
powers of the denominators to alter the type of the integral. Next we write the P that
are left back to @ via the defining equation of P (the equation that decomposed Q).
The reason of this manoeuvre is that we like to avoid terms of the type N2. When the
integrals have been written back in terms of @ and P? — Q? we can continue with a
similar procedure at a lower level.
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This reduction at the lower level gives one minor complication. If N; was removed
when going from a n-point tensor integral to a {n-1)-point tensor integral we have to
shift Q before we can apply the equations in the text, as these equations can only be
used if one of the denominators is of the form (Q* — m?),

The reduction of the two point functions is analogous with the extra complication
that p;-p; could be zero and in addition the masses of the particles in the loop could be
identical. The relevant formulae were shown in the text. The one point functions are
very simple.

A.3 Results

It is fairly easy to implement the above algorithms in a symbolic manipulation program.
In the language Form [9] each of the procedures of the 4, 3, and 2-point takes less then
one page of computer code. With theses it has been proven possible to do a complete
reduction of the four-point function @*@"Q*Q° with all parameters different to only
1443 terms containing only scalar integrals (or 638 terms with the (Q* — P?) terms
unexpanded).

After the reduction there will be many terms involving a determinant like w or é.
It is usually best to evaluate such terms numerically, rather than to rewrite them in
terms of dotproducts. The first reason is one of practicality: when they are expanded
the number of terms may be multiplied by a big factor. The second reason i1s one
of accuracy: these terms are usually in their stable form when written in terms of
the uncontracted Levi-Civita tensors. One needs then only a one time investment of
obtaining the accurate numbers.

When a particularly simple reaction is studied it could be beneficial to first use the
above reduction scheme and then contract the Levi-Civita tensors anyway, because the
contractions may become very simple. A good example of such a reaction is photon-
photon scattering. This reaction has only three parameters and for instance the term

éimrer can be reduced to three terms rather than the regular 386 terms of the most

general case in which there are 10 parameters. Note also that already we needed the
square root of this object in equation (82) for the evaluation of the scalar four point
function.
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