SoftSUSY is hosted by Hepforge, IPPP Durham
SOFTSUSY  4.1
threeBodyDecays.h File Reference

Code calculates three-body decay modes and prints out an SLHA format file with them in. For R-parity conserving NMSSM/MSSM. See arXiv://1703.09717. More...

#include "nmssmsoftsusy.h"
#include "softsusy.h"
#include "physpars.h"
#include "lowe.h"
#include "def.h"
#include "softpars.h"
#include "flavoursoft.h"
#include "susy.h"
#include "particle.h"
#include "twoBodyDecays.h"
#include <iostream>
#include <cstring>
#include <stdlib.h>
#include <cmath>
#include <vector>
#include <iomanip>
#include <complex>

Go to the source code of this file.

Functions

void printRowPDG (ostream &cout, double x)
 
void OutputNoPWs (ostream &cout, Particle &P)
 Outputs the decay table into the leshouchesOutput file with no PWs (partial widths) given, just branching ratios.
 
void OutputYesPWs (ostream &cout, Particle &P)
 Outputs the decay table into the leshouchesOutput file with PWs (partial widths) given after the comments column so as not to affect SLHA form.
 
double Zsfintegralsum (double m1, double m2, double msf, double mf, double mz, double min, double max, double Nsteps, int adaptive, double approx)
 Integral calculating functions for 1->3 decays.
 
double Aintegralsum (double m1, double m2, double mz, double mA, double mf, double min, double max, double Nsteps, int adaptive, double approx)
 
double G3integralsum (double m1, double m2, double m3, double mt, double mb, double min, double max, double Nsteps, int adaptive, double approx)
 
double G2integralsum (double m1, double m2, double m3, double mt, double mb, double min, double max, double Nsteps, int adaptive, double approx)
 
double chiprimeintegralsum (double m1, double m2, double m3, double m4, double mq, double min, double max, double Nsteps, int adaptive, double approx)
 
double Yintegralsum (double m1, double m2, double m3, double m4, double mq, double min, double max, double Nsteps, int adaptive, double approx)
 
double Xintegralsum (double m1, double m2, double m3, double m4, double mq, double min, double max, double Nsteps, int adaptive, double approx)
 
double zetaintegralsum (double m1, double m2, double m3, double m4, double mq, double min, double max, double Nsteps, int adaptive, double approx)
 
double chiintegralsum (double m1, double m2, double m3, double m4, double mq, double min, double max, double Nsteps, int adaptive, double approx)
 
double rhointegralsum (double m1, double m2, double m3, double m4, double mq, double min, double max, double Nsteps, int adaptive, double approx)
 
double xsiintegralsum (double m1, double m2, double m3, double m4, double mq, double min, double max, double Nsteps, int adaptive, double approx)
 
double phitildaintegralsum (double m1, double m2, double m3, double m4, double mq, double min, double max, double Nsteps, int adaptive, double approx)
 
double psitildaintegralsum (double m1, double m2, double m3, double m4, double mq, double min, double max, double Nsteps, int adaptive, double approx)
 
double Zintegralsum (double m1, double m2, double mz, double mf, double min, double max, double Nsteps, int adaptive, double approx)
 
double G1integralsum (double m1, double m2, double m3, double mq, double min, double max, double Nsteps, int adaptive, double approx)
 
double G4integralsum (double m1, double m2, double m3, double m4, double mt, double mb, double min, double max, double Nsteps, int adaptive, double approx)
 
double G5integralsum (double m1, double m2, double m3, double m4, double mt, double mb, double min, double max, double Nsteps, int adaptive, double approx)
 
double G6integralsum (double m1, double m2, double m3, double m4, double mt, double mb, double min, double max, double Nsteps, int adaptive, double approx)
 
double G7integralsum (double m1, double m2, double m3, double m4, double mt, double mb, double min, double max, double Nsteps, int adaptive, double approx)
 
double G8integralsum (double m1, double m2, double m3, double m4, double mt, double mb, double min, double max, double Nsteps, int adaptive, double approx)
 
double Jintegralsum (double m1, double m2, double msf, double mphi, double mf, double min, double max, double Nsteps, double approx, int adaptive, int AorhorH)
 
double ghHintegral (double m1, double m2, double mf, double mh, double mH, double g, double gp, double alpha, int neutralinoi, int neutralinoj, DoubleMatrix &mixNeut, double E)
 
double hHintegral (double m1, double m2, double mf, double mh, double mH, double fromE, double toE, double stepE, double g, double gp, double alpha, DoubleMatrix &mixNeut, int neutralinoi, int neutralinoj)
 
double gluinoamplitudedecaydgaussneutralinoqqpbarfirsttwogen (double mgluino, double mneutralino, double msqL, double msqR, double mquark, double g, double gp, DoubleMatrix &mixNeut, double alphas, char uord, int neut, bool onetothree)
 Hintegral. More...
 
double gluinoamplitudedecaydgaussneutralinottbar (double mgluino, double mst1, double mst2, double mneutralino, double mt, double mWboson, double g, double gp, double thetat, double beta, double alphas, DoubleMatrix &mixNeut, double runmt, int neutralino, bool onetothree, char torb)
 calculates PW for gluino -> neutralino + q qbar pair where q are t More...
 
double gluinoamplitudedecaydgausschartbbar (double mgluino, double mst1, double mst2, double msb1, double msb2, double mtop, double mbottom, double mchar, double alphas, double thetat, double thetab, double MWBoson, double g, double gp, double gammaL, double gammaR, double beta, double runmt, double runmb, int chargino, bool onetothree)
 
double neutralinoamplitudedecaydgaussneutralinoffbar (double mneutralinoi, double msf1, double msf2, double mZboson, double mhiggsl, double mhiggsH, double mhiggsA, double mneutralinoj, double mf, double alphas, double thetaq, double mWboson, double g, double gp, double alpha, double beta, double runmq, DoubleMatrix &mixNeut, int ineutralino, int jneutralino, bool onetothree, char uordornuorl)
 
double neutralinoamplitudedecaycharginoffprimebar (double mneutralinoi, double msfp1, double msfp2, double msf1, double msf2, double mWboson, double mHP, double mcharginoj, double mfp, double mf, double thetaq, double thetaqp, double g, double gp, double alpha, double beta, double thetaL2, double thetaR2, double runmqp, double runmq, DoubleMatrix &mixNeut, int ineutralino, int jchargino, bool onetothree, char qorl, char norc)
 
double fdgauss (double x)
 
double gpsitildadgauss (double Et)
 
double gphitildadgauss (double Et)
 
double gxsidgauss (double Et)
 
double grhodgauss (double Et)
 
double gchidgauss (double Et)
 
double gzetadgauss (double Et)
 
double gXdgauss (double Et)
 
double gYdgauss (double Et)
 
double gchiprimedgauss (double Et)
 
double gG1dgauss (double Et)
 m1 = mgluino, m2 = mstopi, m6 = mtop, m8 = mcharginoj
 
double gG4dgauss (double Et)
 m1 = mgluino, m2 = mstopi, m4 = msbottomi, m6 = mtop, m7 = mbottom , m8 = mcharginoj
 
double gG5dgauss (double Et)
 m1 = mgluino, m2 = mstopi, m4 = msbottomi, m6 = mtop, m7 = mbottom , m8 = mcharginoj
 
double gG6dgauss (double Et)
 m1 = mgluino, m2 = mstopi, m4 = msbottomi, m6 = mtop, m7 = mbottom , m8 = mcharginoj
 
double gG7dgauss (double Et)
 
double gG8dgauss (double Et)
 
double gG2dgauss (double Eb)
 
double gG3dgauss (double Eb)
 
double gZdgauss (double E)
 m1 = mZi, m4 = mZj, m2 = mstop1, m3 = mstop2, mq = mt, MZboson = mz
 
double ghHdgauss (double E)
 m1 = mZi, m4 = mZj, m2 = mstop1, m3 = mstop2, mq = mt, MZboson = mz
 
double gAdgauss (double E)
 m1 = mZi, m4 = mZj, m2 = mstop1, m3 = mstop2, mq = mt
 
double gZsfdgauss (double s)
 m2 = msfi where i is the sfermion contribution interference with Z you are considering
 
double gJdgauss (double s)
 
double gneutineutjffZ1dgauss (double s)
 m1 = mneuti, m4 = mneutj, mq = mf, MZboson = mZboson More...
 
double gneutineutjffZ2dgauss (double s)
 
double gneutineutjffZ3dgauss (double s)
 
double gneutineutjffZ4dgauss (double s)
 
double gintegralhdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mt, MZboson = mz, mh = mhiggsl
 
double gintegralHdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mt, MZboson = mz, mH = mhiggsH
 
double gintegralh1dgauss (double E)
 m1 = mZi, m4 = mZj, mq = mt, MZboson = mz, mh = mhiggsl
 
double gintegralh2dgauss (double E)
 m1 = mZi, m4 = mZj, mq = mt, MZboson = mz, mh = mhiggsl
 
double gintegralh3dgauss (double E)
 m1 = mZi, m4 = mZj, mq = mt, MZboson = mz, mh = mhiggsl
 
double gintegralh4dgauss (double E)
 m1 = mZi, m4 = mZj, mq = mt, MZboson = mz, mh = mhiggsl
 
double gintegralH1dgauss (double E)
 m1 = mZi, m4 = mZj, mq = mt, MZboson = mz, mH = mhiggsH
 
double gintegralH2dgauss (double E)
 m1 = mZi, m4 = mZj, mq = mt, MZboson = mz, mH = mhiggsH
 
double gintegralH3dgauss (double E)
 m1 = mZi, m4 = mZj, mq = mt, MZboson = mz, mH = mhiggsH
 
double gintegralH4dgauss (double E)
 m1 = mZi, m4 = mZj, mq = mt, MZboson = mz, mh = mhiggsl
 
double gintegralhH1dgauss (double E)
 m1 = mZi, m4 = mZj, mq = mt, MZboson = mz, mh = mhiggsl, mH = mhiggsH
 
double gintegralhH2dgauss (double E)
 m1 = mZi, m4 = mZj, mq = mt, MZboson = mz, mh = mhiggsl, mH = mhiggsH
 
double gintegralhH3dgauss (double E)
 m1 = mZi, m4 = mZj, mq = mt, MZboson = mz, mh = mhiggsl, mH = mhiggsH
 
double gintegralhH4dgauss (double E)
 m1 = mZi, m4 = mZj, mq = mt, MZboson = mz, mh = mhiggsl, mH = mhiggsH
 
double gintegralA1dgauss (double E)
 m1 = mZi, m4 = mZj, mq = mt, MZboson = mz, mA = mhiggsA
 
double gintegralA2dgauss (double E)
 m1 = mZi, m4 = mZj, mq = mt, MZboson = mz, mA = mhiggsA
 
double gintegralA3dgauss (double E)
 m1 = mZi, m4 = mZj, mq = mt, MZboson = mz, mA = mhiggsA
 
double gintegralA4dgauss (double E)
 m1 = mZi, m4 = mZj, mq = mt, MZboson = mz, mA = mhiggsA
 
double gintegral1Zsfdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, MZboson = mz, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2) More...
 
double gintegral2Zsfdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, MZboson = mz, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2) More...
 
double gintegral3Zsfdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, MZboson = mz, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2) More...
 
double gintegral4Zsfdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, MZboson = mz, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2) More...
 
double gintegral5Zsfdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, MZboson = mz, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2) More...
 
double gintegral6Zsfdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, MZboson = mz, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2) More...
 
double gintegral7Zsfdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, MZboson = mz, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2) More...
 
double gintegral8Zsfdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, MZboson = mz, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2) More...
 
double gintegral1hsfdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2) More...
 
double gintegral2hsfdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2) More...
 
double gintegral3hsfdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2) More...
 
double gintegral4hsfdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2) More...
 
double gintegral5hsfdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2) More...
 
double gintegral6hsfdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2) More...
 
double gintegral7hsfdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2) More...
 
double gintegral8hsfdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2) More...
 
double gintegral1Hsfdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2) More...
 
double gintegral2Hsfdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2) More...
 
double gintegral3Hsfdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2) More...
 
double gintegral4Hsfdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2) More...
 
double gintegral5Hsfdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2) More...
 
double gintegral6Hsfdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2) More...
 
double gintegral7Hsfdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2) More...
 
double gintegral8Hsfdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2) More...
 
double gintegral1ZAdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, mA = mhiggsA, m2 = msfi, MZboson = mz
 
double gintegral2ZAdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, mA = mhiggsA, m2 = msfi, MZboson = mz
 
double gintegral3ZAdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, mA = mhiggsA, m2 = msfi, MZboson = mz
 
double gintegral4ZAdgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, mA = mhiggsA, m2 = msfi, MZboson = mz
 
double gneutineutjffgA1dgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, mA = mhiggsA, MZboson = mz
 
double gneutineutjffgA2dgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, mA = mhiggsA, MZboson = mz
 
double gneutineutjffgA3dgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, mA = mhiggsA, MZboson = mz
 
double gneutineutjffgA4dgauss (double E)
 m1 = mZi, m4 = mZj, mq = mf, mA = mhiggsA, MZboson = mz
 
double gneuticharjffpW1dgauss (double E)
 m1 = mZi, m2 = mWj, m3 = mf, m4 = mfp, MWboson = mw
 
double gneuticharjffpW2dgauss (double E)
 m1 = mZi, m2 = mWj, m3 = mf, m4 = mfp, MWboson = mw
 
double gneuticharjffpHpm1dgauss (double E)
 m1 = mneutralinoi, m2 = mcharginoj, m3 = mf, m4 = mfp, m5 = mHpm; //sometimes mass order differs as called in different cases
 
double gneuticharjffpHpm2dgauss (double E)
 m1 = mneutralinoi, m2 = mcharginoj, m3 = mf, m4 = mfp, m5 = mHpm; //sometimes mass order differs as called in different cases
 
double gneuticharjffpHpm3dgauss (double E)
 m1 = mneutralinoi, m2 = mcharginoj, m3 = mf, m4 = mfp, m5 = mHpm; //sometimes mass order differs as called in different cases
 
double gneuticharjffpHpm4dgauss (double E)
 m1 = mneutralinoi, m2 = mcharginoj, m3 = mf, m4 = mfp, m5 = mHpm; //sometimes mass order differs as called in different cases
 
double gneuticharjffp1sf1sf2dgauss (double E)
 m1 = mneutralinoi, m2 = mf, m3 = mcharginoj, m4 = mfp, m5 = msf1, m6 = msf2 More...
 
double gneuticharjffp2sf1sf2dgauss (double E)
 m1 = mneutralinoi, m2 = mf, m3 = mcharginoj, m4 = mfp, m5 = msf1, m6 = msf2 More...
 
double gneuticharjffp3sf1sf2dgauss (double E)
 m1 = mneutralinoi, m2 = mf, m3 = mcharginoj, m4 = mfp, m5 = msf1, m6 = msf2 More...
 
double gneuticharjffp4sf1sf2dgauss (double E)
 m1 = mneutralinoi, m2 = mf, m3 = mcharginoj, m4 = mfp, m5 = msf1, m6 = msf2 More...
 
double gneuticharjffp1sfp1sf2dgauss (double E)
 m1 = mneutralinoi, m2 = mf, m3 = mcharginoj, m4 = mfp, m5 = msfp1, m6 = msf2
 
double gneuticharjffp2sfp1sf2dgauss (double E)
 m1 = mneutralinoi, m2 = mf, m3 = mcharginoj, m4 = mfp, m5 = msfp1, m6 = msf2
 
double gneuticharjffp3sfp1sf2dgauss (double E)
 m1 = mneutralinoi, m2 = mf, m3 = mcharginoj, m4 = mfp, m5 = msfp1, m6 = msf2
 
double gneuticharjffp4sfp1sf2dgauss (double E)
 m1 = mneutralinoi, m2 = mf, m3 = mcharginoj, m4 = mfp, m5 = msfp1, m6 = msf2
 
double gneuticharjffp5sfp1sf2dgauss (double E)
 m1 = mneutralinoi, m2 = mf, m3 = mcharginoj, m4 = mfp, m5 = msfp1, m6 = msf2
 
double gneuticharjffp6sfp1sf2dgauss (double E)
 m1 = mneutralinoi, m2 = mf, m3 = mcharginoj, m4 = mfp, m5 = msfp1, m6 = msf2
 
double gneuticharjffp7sfp1sf2dgauss (double E)
 m1 = mneutralinoi, m2 = mf, m3 = mcharginoj, m4 = mfp, m5 = msfp1, m6 = msf2
 
double gneuticharjffp8sfp1sf2dgauss (double E)
 m1 = mneutralinoi, m2 = mf, m3 = mcharginoj, m4 = mfp, m5 = msfp1, m6 = msf2
 
double gneuticharjffp1WHpmdgauss (double E)
 m1 = mneutralinoi, m2 = mcharginoj, m3 = mf, m4 = mfp, m5 = mWboson, m6 = mHpm
 
double gneuticharjffp2WHpmdgauss (double E)
 m1 = mneutralinoi, m2 = mcharginoj, m3 = mf, m4 = mfp, m5 = mWboson, m6 = mHpm
 
double gneuticharjffp3WHpmdgauss (double E)
 m1 = mneutralinoi, m2 = mcharginoj, m3 = mf, m4 = mfp, m5 = mWboson, m6 = mHpm
 
double gneuticharjffp4WHpmdgauss (double E)
 m1 = mneutralinoi, m2 = mcharginoj, m3 = mf, m4 = mfp, m5 = mWboson, m6 = mHpm
 
double gneuticharjffpW1Sfpdgauss (double E)
 m1 = mneutralinoi, m2 = mfp, m3 = mf, m4 = mcharginoj, m5 = mWboson, m6 = msfp
 
double gneuticharjffpW2Sfpdgauss (double E)
 m1 = mneutralinoi, m2 = mfp, m3 = mf, m4 = mcharginoj, m5 = mWboson, m6 = msfp
 
double gneuticharjffpW3Sfpdgauss (double E)
 m1 = mneutralinoi, m2 = mfp, m3 = mf, m4 = mcharginoj, m5 = mWboson, m6 = msfp
 
double gneuticharjffpW4Sfpdgauss (double E)
 m1 = mneutralinoi, m2 = mfp, m3 = mf, m4 = mcharginoj, m5 = mWboson, m6 = msfp
 
double gneuticharjffpW5Sfpdgauss (double E)
 m1 = mneutralinoi, m2 = mfp, m3 = mf, m4 = mcharginoj, m5 = mWboson, m6 = msfp
 
double gneuticharjffpW6Sfpdgauss (double E)
 m1 = mneutralinoi, m2 = mfp, m3 = mf, m4 = mcharginoj, m5 = mWboson, m6 = msfp
 
double gneuticharjffpW7Sfpdgauss (double E)
 m1 = mneutralinoi, m2 = mfp, m3 = mf, m4 = mcharginoj, m5 = mWboson, m6 = msfp
 
double gneuticharjffpW8Sfpdgauss (double E)
 m1 = mneutralinoi, m2 = mfp, m3 = mf, m4 = mcharginoj, m5 = mWboson, m6 = msfp
 
double gneuticharjffpHg1dgauss (double E)
 m1 = mneutralinoi, m2 = mcharginoj, m3 = mf, m4 = mfp, m5 = mWboson, m6 = mHP
 
double gneuticharjffpHg2dgauss (double E)
 m1 = mneutralinoi, m2 = mcharginoj, m3 = mf, m4 = mfp, m5 = mWboson, m6 = mHP
 
double gneuticharjffpHg3dgauss (double E)
 m1 = mneutralinoi, m2 = mcharginoj, m3 = mf, m4 = mfp, m5 = mWboson, m6 = mHP
 
double gneuticharjffpHg4dgauss (double E)
 m1 = mneutralinoi, m2 = mcharginoj, m3 = mf, m4 = mfp, m5 = mWboson, m6 = mHP
 
double gneuticharjffp1gsfpdgauss (double E)
 m1 = mneutralinoi, m2 = mfp, m3 = mf, m4 = mcharginoj, m5 = mWboson, m6 = msfp1
 
double gneuticharjffp2gsfpdgauss (double E)
 m1 = mneutralinoi, m2 = mfp, m3 = mf, m4 = mcharginoj, m5 = mWboson, m6 = msfp1
 
double gneuticharjffp3gsfpdgauss (double E)
 m1 = mneutralinoi, m2 = mfp, m3 = mf, m4 = mcharginoj, m5 = mWboson, m6 = msfp1
 
double gneuticharjffp4gsfpdgauss (double E)
 m1 = mneutralinoi, m2 = mfp, m3 = mf, m4 = mcharginoj, m5 = mWboson, m6 = msfp1
 
double gneuticharjffp5gsfpdgauss (double E)
 m1 = mneutralinoi, m2 = mfp, m3 = mf, m4 = mcharginoj, m5 = mWboson, m6 = msfp1
 
double gneuticharjffp6gsfpdgauss (double E)
 m1 = mneutralinoi, m2 = mfp, m3 = mf, m4 = mcharginoj, m5 = mWboson, m6 = msfp1
 
double gneuticharjffp7gsfpdgauss (double E)
 m1 = mneutralinoi, m2 = mfp, m3 = mf, m4 = mcharginoj, m5 = mWboson, m6 = msfp1
 
double gneuticharjffp8gsfpdgauss (double E)
 m1 = mneutralinoi, m2 = mfp, m3 = mf, m4 = mcharginoj, m5 = mWboson, m6 = msfp1
 
double gneuticharjffp1sfpsfpdgauss (double E)
 m1 = mneutralinoi, m2 = mfp, m3 = -mf, m4 = charginoj, m5 = msfp1, m6 = msfp2
 
double gneuticharjffp21sfpsfpdgauss (double E)
 
double gneuticharjffp31sfpsfpdgauss (double E)
 
double gneuticharjffp41sfpsfpdgauss (double E)
 
DoubleVector squarkmixcharginocouplings (double g, double theta, double beta, double gammaL, double gammaR, double runmt, double runmb, double mWboson, int torb)
 
DoubleVector higgsphisamecharginocouplings (double alpha, double beta, double thetaL, double thetaR)
 calculates the couplings of a neutral higgs (h,H,A) to Wtildai Wtildai - i.e. to two charginos of the same type (mass)
 
DoubleVector higgsphidifcharginocouplings (double alpha, double beta, double thetaL, double thetaR)
 calculates the couplings of a netural higgs (h,H,A) to Wtildai Wtildaj - i.e. to two charginos of different type (mass)
 
DoubleVector higgshsquarksamehandcouplings (double mWboson, double g, double gp, double alpha, double beta, double mupq, double mdownq)
 calculates the couplings of light scalar higgs h to two squarks of same handedness
 
DoubleVector higgshsquarkdiffhandcouplings (double mWboson, double g, double alpha, double beta, double mupq, double mdownq, double greekmu, double Aup, double Adown)
 calculates the couplings of light scalar higgs h to two squarks of different handedness
 
DoubleVector higgsHsquarksamehandcouplings (double mWboson, double g, double gp, double alpha, double beta, double mupq, double mdownq)
 calculates the couplings of heavy scalar higgs H to two squarks of same handedness
 
DoubleVector higgsHsquarkdiffhandcouplings (double mWboson, double g, double alpha, double beta, double mupq, double mdownq, double greekmu, double Aup, double Adown)
 calculates the couplings of heavy scalar higgs H to two squarks of different handedness
 
DoubleVector higgshsleptonsamehandcouplings (double mWboson, double g, double gp, double alpha, double beta, double mel)
 calculates the couplings of light scalar higgs h to two sleptons of same handedness
 
DoubleVector higgshsleptondiffhandcouplings (double mWboson, double g, double alpha, double beta, double mel, double greekmu, double Ae)
 calculates the couplings of light scalar higgs h to two sleptons of different handedness
 
DoubleVector higgsHsleptonsamehandcouplings (double mWboson, double g, double gp, double alpha, double beta, double mel)
 calculates the couplings of heavy scalar higgs H to two sleptons of same handedness
 
DoubleVector higgsHsleptondiffhandcouplings (double mWboson, double g, double alpha, double beta, double mel, double greekmu, double Ae)
 calculates the couplings of heavy scalar higgs H to two sleptons of different handedness
 
DoubleVector higgsHplussquarkcouplings (double mWboson, double g, double beta, double mup, double mdown, double greekmu, double Au, double Ad)
 calculates the couplings of charged scalar higgs H+ to two squarks
 
DoubleVector squarkmixcharginocouplings (double g, double theta, double beta, double gammaL, double gammaR, double runmt, double runmb, double mWboson, double mch1, double mch2, int torb)
 Functions that calculate the couplings:
 
DoubleVector foftau (double mpart, double mcomp)
 Function Declarations used to calculate Partial Widths in decays.cpp. More...
 
DoubleVector goftau (double mpart, double mcomp)
 g(tau) function for use in h->Z gamma
 
double chToN2piInt (double qSq, const DoubleVector &v)
 
double charginoToNeutralino2pion (const MssmSoftsusy *m)
 
Complex fofqsq (double qSq)
 
Complex bw (double mSq, double gamma, double qSq)
 

Variables

const double accuracy = 0.01
 Approximate accuracy with which 3 body decays are calculated.
 
const double mcpole = 1.40
 
const double mspole = 0.19
 
const double hadronicScale = 1.5
 

Detailed Description

Code calculates three-body decay modes and prints out an SLHA format file with them in. For R-parity conserving NMSSM/MSSM. See arXiv://1703.09717.

Function Documentation

double fdgauss ( double  x)

dgauss integrands for numerical integration of phase space in 1->3 decays Make sure you have set useInDGauss before calling this function

DoubleVector foftau ( double  mpart,
double  mcomp 
)

Function Declarations used to calculate Partial Widths in decays.cpp.

Function Declarations used to calculate Partial Widths in decays.cpp.

f(tau) function for use in h->gamma gamma or Z gamma

double gintegral1hsfdgauss ( double  E)

m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2)

argument of the log

double gintegral1Hsfdgauss ( double  E)

m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2)

argument of the log

double gintegral1Zsfdgauss ( double  E)

m1 = mZi, m4 = mZj, mq = mf, MZboson = mz, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2)

argument of the log

double gintegral2hsfdgauss ( double  E)

m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2)

argument of the log

double gintegral2Hsfdgauss ( double  E)

m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2)

argument of the log

double gintegral2Zsfdgauss ( double  E)

m1 = mZi, m4 = mZj, mq = mf, MZboson = mz, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2)

argument of the log

double gintegral3hsfdgauss ( double  E)

m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2)

argument of the log

double gintegral3Hsfdgauss ( double  E)

m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2)

argument of the log

double gintegral3Zsfdgauss ( double  E)

m1 = mZi, m4 = mZj, mq = mf, MZboson = mz, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2)

argument of the log

double gintegral4hsfdgauss ( double  E)

m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2)

argument of the log

double gintegral4Hsfdgauss ( double  E)

m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2)

argument of the log

double gintegral4Zsfdgauss ( double  E)

m1 = mZi, m4 = mZj, mq = mf, MZboson = mz, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2)

argument of the log

double gintegral5hsfdgauss ( double  E)

m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2)

argument of the log

double gintegral5Hsfdgauss ( double  E)

m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2)

argument of the log

double gintegral5Zsfdgauss ( double  E)

m1 = mZi, m4 = mZj, mq = mf, MZboson = mz, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2)

argument of the log

double gintegral6hsfdgauss ( double  E)

m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2)

argument of the log

double gintegral6Hsfdgauss ( double  E)

m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2)

argument of the log

double gintegral6Zsfdgauss ( double  E)

m1 = mZi, m4 = mZj, mq = mf, MZboson = mz, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2)

argument of the log

double gintegral7hsfdgauss ( double  E)

m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2)

argument of the log

double gintegral7Hsfdgauss ( double  E)

m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2)

argument of the log

double gintegral7Zsfdgauss ( double  E)

m1 = mZi, m4 = mZj, mq = mf, MZboson = mz, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2)

argument of the log

double gintegral8hsfdgauss ( double  E)

m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2)

argument of the log

double gintegral8Hsfdgauss ( double  E)

m1 = mZi, m4 = mZj, mq = mf, mhiggsl = mh, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2)

argument of the log

double gintegral8Zsfdgauss ( double  E)

m1 = mZi, m4 = mZj, mq = mf, MZboson = mz, m2 = msfi where i is the sfermion index you're considering for that interference (i = 1,2)

argument of the log

double gluinoamplitudedecaydgausschartbbar ( double  mgluino,
double  mst1,
double  mst2,
double  msb1,
double  msb2,
double  mtop,
double  mbottom,
double  mchar,
double  alphas,
double  thetat,
double  thetab,
double  MWBoson,
double  g,
double  gp,
double  gammaL,
double  gammaR,
double  beta,
double  runmt,
double  runmb,
int  chargino,
bool  onetothree 
)

Different to T&B, they have + sin(2*thetat)*G8, I follow SPheno

Different to T&B, they have - sin(2*thetat)*G8, I follow SPheno

Global minus sign difference cf T&B, I follow SPheno

Different to T&B, they have - alphasb1ch*betasb1ch*G3sb1, I follow SPheno

Different to T&B, they have - alphasb2ch*betasb2ch*G3sb2, I follow SPheno

Taken mb -> 0 limit in squared matrix element (but not in phase space) so no sb1sb2 interference term

The sign in front of the G7st1sb1 and G5st1sb1 terms has been changed from that given in Baer and Tata in order to agree with SPheno.

The sign in front of the G7st1sb1 and G5st1sb1 terms has been changed from that given in Baer and Tata in order to agree with SPheno.

The sign in front of the G7st1sb1 and G5st1sb1 terms has been changed from that given in Baer and Tata in order to agree with SPheno.

The sign in front of the G7st1sb1 and G5st1sb1 terms has been changed from that given in Baer and Tata in order to agree with SPheno.

double gluinoamplitudedecaydgaussneutralinoqqpbarfirsttwogen ( double  mgluino,
double  mneutralino,
double  msqL,
double  msqR,
double  mquark,
double  g,
double  gp,
DoubleMatrix mixNeut,
double  alphas,
char  uord,
int  neut,
bool  onetothree 
)

Hintegral.

1 to 3 decay functions calling dgauss

Hintegral.

1->3 decay not relevant here if one to two decay open

double gluinoamplitudedecaydgaussneutralinottbar ( double  mgluino,
double  mst1,
double  mst2,
double  mneutralino,
double  mt,
double  mWboson,
double  g,
double  gp,
double  thetat,
double  beta,
double  alphas,
DoubleMatrix mixNeut,
double  runmt,
int  neutralino,
bool  onetothree,
char  torb 
)

calculates PW for gluino -> neutralino + q qbar pair where q are t

Note the effect of the complex couplings and the pm factors for negative masses cancel out as the couplings always appear in pairs so multiplying them gives an extra minus sign when they are purely imaginary, but this extra minus sign is cancelled out by the extra minus sign in the pm factor. Therefore really the additional minus signs come from the fact I've used the neutralino mass itself throughout my calculation (rather than its absolute value) which therefore naturally introduces additional minus signs.

Gammast1st2 terms as from T&B but with sign change for X term and also the factor of -(cos^2(thetat)-sin^2(thetat))(st1alpha1*st2alpha1+st1beta1*st2beta1) T&B has in the chiprime term has been changed to (cos^2(thetat)+sin^2(thetat))(st1alpha1*st2alpha1 - st1beta1*st2beta1) = 1*(st1alpha1*st2alpha1 - st1beta1*st2beta1), in order in both cases to agree with SPHENO

Extra terms SPHENO has in Gammast1st2 not present in T&B

double gneuticharjffp1sf1sf2dgauss ( double  E)

m1 = mneutralinoi, m2 = mf, m3 = mcharginoj, m4 = mfp, m5 = msf1, m6 = msf2

Avoid small negative values of squareplus at upper boundary where theoretically s = 0 exactly.

double gneuticharjffp2sf1sf2dgauss ( double  E)

m1 = mneutralinoi, m2 = mf, m3 = mcharginoj, m4 = mfp, m5 = msf1, m6 = msf2

Avoid small negative values of squareplus at upper boundary where theoretically s = 0 exactly.

double gneuticharjffp3sf1sf2dgauss ( double  E)

m1 = mneutralinoi, m2 = mf, m3 = mcharginoj, m4 = mfp, m5 = msf1, m6 = msf2

Avoid small negative values of squareplus at upper boundary where theoretically s = 0 exactly.

double gneuticharjffp4sf1sf2dgauss ( double  E)

m1 = mneutralinoi, m2 = mf, m3 = mcharginoj, m4 = mfp, m5 = msf1, m6 = msf2

Avoid small negative values of squareplus at upper boundary where theoretically s = 0 exactly.

double gneutineutjffZ1dgauss ( double  s)

m1 = mneuti, m4 = mneutj, mq = mf, MZboson = mZboson

Set to 0 to avoid numerical precision causing a very small but positive squareminus1 at smax when it should be exactly 0, this can cause problems as it would make lambda1 the sqrt of a negative number (as squareplus1 is negative), avoid this by setting to 0

double gneutineutjffZ2dgauss ( double  s)

Set to 0 to avoid numerical precision causing a very small but positive squareminus1 at smax when it should be exactly 0, this can cause problems as it would make lambda1 the sqrt of a negative number (as squareplus1 is negative), avoid this by setting to 0

double gneutineutjffZ3dgauss ( double  s)

Set to 0 to avoid numerical precision causing a very small but positive squareminus1 at smax when it should be exactly 0, this can cause problems as it would make lambda1 the sqrt of a negative number (as squareplus1 is negative), avoid this by setting to 0

double gneutineutjffZ4dgauss ( double  s)

Set to 0 to avoid numerical precision causing a very small but positive squareminus1 at smax when it should be exactly 0, this can cause problems as it would make lambda1 the sqrt of a negative number (as squareplus1 is negative), avoid this by setting to 0

double gpsitildadgauss ( double  Et)

< this can happen erronesouly at very end of range due to finite precision used, squareplus should actually then be very very small and +ve

double neutralinoamplitudedecaycharginoffprimebar ( double  mneutralinoi,
double  msfp1,
double  msfp2,
double  msf1,
double  msf2,
double  mWboson,
double  mHP,
double  mcharginoj,
double  mfp,
double  mf,
double  thetaq,
double  thetaqp,
double  g,
double  gp,
double  alpha,
double  beta,
double  thetaL2,
double  thetaR2,
double  runmqp,
double  runmq,
DoubleMatrix mixNeut,
int  ineutralino,
int  jchargino,
bool  onetothree,
char  qorl,
char  norc 
)

Just usual yukawa for up type

Just usual yukawa for down type

correction factor for negative masses

correction factor for negative masses

correction factor for if it's chargino -> neutralino fp fbar rather than neutralino -> chargino fpbar f

No snuR exists so only one sfp contribution

No snuR exists so only one sfp contribution

GammaW

Hpm1 contribution (W+ goldstone):

Hpm2 contribution (Actual Hpm):

Sfp Sfp diagonal (Remember fp is u-type fermion)

Sf Sf diagonal

Sfp t sf u interference Sfp 1 sf 2

Sfp 1 Sf 1 interference

Sfp 2 Sf 2 interference

Sfp 2 Sf 1 interference

W-Hpm interference

W-goldstone interference

W Sfp 1 interference

W Sfp 2 interference

W Sf1 interference

W Sf2 interference

H+ goldstone interference

goldstone - sfp1 interference

swap which integral goes with which couplingcombo

goldstone - sfp2 interference

H+ - sfp1 interference

H+ - sfp2 interference

goldstone - sf1 interference

goldstone - sf2 interference

Hpm - sf2 interference

Sfp Sfp interference

Sf - Sf interference

double neutralinoamplitudedecaydgaussneutralinoffbar ( double  mneutralinoi,
double  msf1,
double  msf2,
double  mZboson,
double  mhiggsl,
double  mhiggsH,
double  mhiggsA,
double  mneutralinoj,
double  mf,
double  alphas,
double  thetaq,
double  mWboson,
double  g,
double  gp,
double  alpha,
double  beta,
double  runmq,
DoubleMatrix mixNeut,
int  ineutralino,
int  jneutralino,
bool  onetothree,
char  uordornuorl 
)

correction factor for negative masses

correction factor for negative masses

First sf t sf u msf1-msf1, msf1-msf2, msf2-msf2 components:

the problem is in here - DEBUG

sf sf diag contribution 2x as t and u same

sf sf non diag 2x as t and u same

Pseudoscalar A contribution:

Have an additional pseudoscalar goldstone with mass of Z due to being in Feynman gauge, to add in the longitudinal polarisation of the Z

set so can use same integrals as for pseudoscalar A boson but now with Z mass

here set mh = mA as using the integrands written for h with mh -> mA

here set mh = mA as using the integrands written for h with mh -> mA

Goldstone - sf interference:

here set mh = mZ as using the integrands written for h with mh -> mA -> mZ

here set mh = mZ as using the integrands written for h with mh -> mA -> mZ

Goldstone-A interference

Coupling combos:

void printRowPDG ( ostream &  cout,
double  x 
)

make it return a character when you've worked out the equivalent of printf

Traps -0.0

Variable Documentation

const double hadronicScale = 1.5

When mass splitting is below this scale, chargino decays involving hadrons are calculated rather than to quarks

const double mcpole = 1.40

Change mcpole to alter quark "pole" masses used in h -> qq with QCD corrections

const double mspole = 0.19

Change mspole to alter quark "pole" masses used in h -> qq with QCD corrections