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Abstract

We describe an extension of the SOFTSUSY spectrum calculator to include two-loop supersymmetric QCD (SUSYQCD)
corrections of order O(α2

s) to gluino and squark pole masses, either in the minimal supersymmetric standard model
(MSSM) or the next-to-minimal supersymmetric standard model (NMSSM). This document provides an overview of
the program and acts as a manual for the new version of SOFTSUSY, which includes the increase in accuracy in squark
and gluino pole mass predictions.
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1. Program Summary

Program title: SOFTSUSY
Program obtainable from: http://softsusy.hepforge.org/
Distribution format: tar.gz
Programming language: C++, fortran, C
Computer: Personal computer.
Operating system: Tested on Linux 3.4.6, Mac OS X 10.7.5
Word size: 64 bits.
External routines: None
Typical running time: 15 seconds per parameter point.
Nature of problem: Calculating supersymmetric particle spectrum, mixing parameters and couplings in the MSSM
or the NMSSM. The solution to the renormalisation group equations must be consistent with theoretical boundary
conditions on supersymmetry breaking parameters, as well as a weak-scale boundary condition on gauge couplings,
Yukawa couplings and the Higgs potential parameters.
Solution method: Nested fixed point iteration.
Restrictions: SOFTSUSY will provide a solution only in the perturbative regime and it assumes that all couplings of
the model are real (i.e. CP−conserving). If the parameter point under investigation is non-physical for some reason
(for example because the electroweak potential does not have an acceptable minimum), SOFTSUSY returns an error
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message. The higher order corrections included are for the MSSM (R−parity conserving or violating) or the real
R−parity conserving NMSSM only.
CPC Classification: 11.1 and 11.6.
Does the new version supersede the previous version?: Yes.
Reasons for the new version: It is desirable to improve the accuracy of the squark and gluinos mass predictions, since
they strongly affect supersymmetric particle production cross-sections at colliders.
Summary of revisions: The calculation of the squark and gluino pole masses is extended to be of next-to-next-to
leading order in SUSYQCD, i.e. including terms up to O(g4

s/(16π2)2).

2. Introduction

Near the beginning of LHC Run II at 13 TeV centre of mass collision energy, hopes are high for the discovery
of new physics. A much-studied and long-awaited framework for new physics, namely weak-scale superymmetry, is
being searched for in many different channels. In the several prominent explicit models of supersymmetry breaking
meditaion, the best chance of observing the production and subsequent decay of supersymmetric particles is via
squark and/or gluino production. Squarks and gluinos tend to have the largest production cross-sections among the
sparticles and Higgs bosons of the MSSM, because they may be produced by tree-level strong interactions, as opposed
to smaller electroweak cross sections relevant for the other superparticles. In R−parity conserving supersymmetry
(popular because of its apparently viable dark matter candidate), squark and/or gluino production may result in a
signal of an excess of highly energetic jets in conjunction with large missing transverse momentum with respect to
Standard Model predictions. This classic LHC signature was searched for at LHC Run I at 7 and 8 TeV centre of
mass energy, but no significant excess above Standard Model backgrounds was observed. Jets plus missing transverse
momentum channels then provided the strongest constraints in the constrained minimal supersymmetric standard
model, for instance (CMSSM), along with many other models of supersymmetry breaking mediation.

The higher collision energy at Run II allows for new MSSM parameter space to be explored. In the event of a
discovery of the production of supersymmetric particles, one will want to first interpret their signals correctly, and
then make inferences about the superymmetry breaking parameters. In order to do this with a greater accuracy, we
must use higher orders in perturbation theory. Of particular interest is the connection between the supersymmetric
masses of the squarks and gluinos and the experimental observables (functions of jet and missing momenta). The
experimental observables may be used to infer pole (or kinematic) masses of the supersymmetric particles, which
may then be connected via perturbation theory to the more fundamental supersymmetry breaking parameters in the
Lagrangian. These could then be used to test the underlying supersymmetry breaking mediation mechanism [1, 2].
Conversely, if no significant signal for supersymmetry is to be found at the LHC, we shall want to interpret the
excluded parameter space in terms of the fundamental supersymmetry breaking parameters. Again, this connection
is sensitive (for identical reasons to the discovery case) to the order in perturbation theory which is used. In the most
easily accessible channels at the LHC (squark/gluino production), it is useful therefore to use higher orders in the
QCD gauge coupling, since this is the largest relevant expansion parameter.

State-of-the art publicly available NMSSM or MSSM spectrum generators such as ISAJET [3], FlexibleSUSY [4],
NMSPEC [5], SUSPECT [6], SARAH [7], SPHENO [8], SUSEFLAV [9] or previous versions of SOFTSUSY [10], do not have
the complete O(α2

s/(16π2)) two-loop corrections to gluino and squark masses included, despite their being calculated
and presented in the literature [11, 12, 13]. Here, we describe their inclusion into the MSSM spectrum calculation
in the popular SOFTSUSY program, making them publicly available for the first time. As we emphasised above, we
expect them to be useful in increasing the accuracy of inference from data of supersymmetry breaking in the squark
and gluino sectors.

The paper proceeds as follows: in the next section, the higher order terms that are included are briefly reviewed.
We then provide an example of their effect on a line through CMSSM space. After a summary, the appendices contain
technical information on how to compile and run SOFTSUSY including the higher order terms.

3. Higher Order Terms

Two-loop contributions to fermion pole masses in gauge theories were calculated in Ref. [11] and these results are
specialised to compute the gluino pole mass. Depending upon the ratio mq̃/mg̃, a two-loop correction of up to several
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Figure 1: Feynman diagrams for the self-energy of a particle that couples to two lighter particles. The dark blobs in (b) and (c) represent 1-loop
subdiagrams. Near threshold, diagrams (b) and (c) have 1/(−δ)1/2 and 1/(−δ)3/2 singularities, respectively, where s = (

√
x +
√

y)2(1 + δ), with x
and y the squared masses of the internal particles.

percent was found. On the other hand, Ref. [12] calculated the two-loop contributions to scalar masses from gauge
theory and these results are specialised to the two-loop squark masses, where corrections up to about one percent
were noted. In both cases, the results were obtained in the DR

′
renormalization scheme [14], consistent with the

renormalization group equations used in softly broken supersymmetric models. The version of SOFTSUSY described
here now contains these computations [11, 12]. A library for computing two-loop self-energy integrals, TSIL [15], is
included within the SOFTSUSY distribution; there is no need to download it separately.

In addition, the gluino result has been improved by re-expanding the gluino self-energy function squared mass
arguments around the gluino, squark, and top quark pole masses, as described in Ref. [13]. This requires iteration
to determine the gluino pole mass, and hence is slower than simply evaluating the self-energy functions with the
lagrangian mass parameters, but the accuracy of the calculation is improved significantly [13]. Typically, 4 to 6
iterations are required to reach the default tolerance of less than 1 part in 105 difference between successive iterations
for the gluino pole mass. This iteration is not the bottleneck in the calculation, as we find that the CPU time spent
on the squark masses is about twice that spent on the gluino mass, even with 6 iterations for the latter. We did not
implement this improvement for the squarks since the effect is less significant, and the necessary iterations would be
much slower.

3.1. Kinky Masses
In implementing these 2-loop pole masses, we encountered an interesting issue that does not seem to have been

noted before, as far as we know. Consider the self-energy and pole mass of a particle Z that has a three-point coupling
to particles X and Y . Let the tree-level squared masses of these particles by z, x, and y respectively. If z happens to
be close to the threshold value (

√
x +
√

y)2, then the computed 2-loop complex pole mass of Z will have a singularity
proportional to

1/
√
−δ − iϵ (1)

where ϵ is infinitesimal and positive, and

z = (
√

x +
√

y)2(1 + δ). (2)

The reason for this can be understood from the sequence of Feynman diagrams shown in Figure 1. After reduction
to basis integrals, the result of Figure 1(b) contains terms proportional to V(x, y, u, v) and B(x, y′), in the notation of
refs. [16, 15]. (Here the prime represents a derivative with respect to the corresponding argument, and the external
momentum invariant is s = z.) Then, for example, one can evaluate:

B(x, y′)
∣∣∣∣
s=(
√

x+
√

y)2(1+δ)
= −

π(x/y)1/4

(
√

x +
√

y)2
√
−δ − iϵ

+ . . . . (3)

We have found that in general such singularities do not cancel within the fixed-order 2-loop pole mass calculation.
This includes e.g. the pole mass of the gluino, where we checked that there are singularities in the pole mass as
one varies the top mass and one of the stop masses very close to the 2-body decay threshold. Similarly, there are
singularities in the 2-loop pole masses of the top squarks, in each case when the top mass and the gluino happen to
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Figure 2: Feynman diagram for the self-energy of a particle that couples to two lighter particles, each of which couples to a massless gauge boson.
Near threshold, this diagram has a ln(−δ) singularity, where s = (

√
x +
√

y)2(1 + δ), with x and y the squared masses of the internal particles.

be very close to the 2-body decay thresholds. We have also checked that this behavior occurs in a simple toy model
involving only three massive scalar particles.

This singular behavior might be quite surprising, because the pole mass is supposed to be an observable, and
therefore ought to be free of divergences of any kind. The resolution is that, similar to problems with infrared
divergences, the singularity is an artifact of truncating perturbation theory. The 3-loop diagram of Figure 1(c) will
diverge like 1/(−δ)3/2, and similar diagrams of loop order L will diverge like 1/(−δ)L−3/2. These contributions can
presumably be resummed to give a result that is well-behaved as δ→ 0, although proving that is beyond the scope of
the present paper.

The above singularity behavior is not tied to the presence of massless gauge bosons. However, if massless gauge
bosons are present, then there is another, less severe, type of singular threshold behavior, due to the Feynman dia-
gram shown in Figure 2. In the notation of refs. [16, 15], this arises due to the near-threshold dependence of the
corresponding self-energy basis integral:

M(x, x, y, y, 0)
∣∣∣∣
s=(
√

x+
√

y)2(1+δ)
= −

2π2

(
√

x +
√

y)2
ln(−δ − iϵ) + . . . . (4)

Again, the singularity in the computed 2-loop pole mass is an artifact of the truncation of perturbation theory, and
would presumably be removed by a resummation including all diagrams with 2, 3, 4, . . . massless gauge bosons ex-
changed between particles X and Y .

Note that it requires some bad luck to encounter any of these threshold singularity problems in practice, as there
is no good reason why the tree-level masses should be tuned to the high precision necessary to make the problem
numerically significant. Nevertheless, it could lead to a small1 “kink” in the computed pole mass if one performs
a scan over models by varying the input masses. To avoid this possibility, in our code we test for small δ, and
then replace the offending 2-loop self-energy basis integrals B(x, y′) and V(x, y, u, v) and M(x, x, y, y, 0) by values
interpolated from slightly larger and smaller values of the external momentum invariant. Explicitly, if δ < t (we
choose t = 0.04 in the current version of SOFTSUSY, with the value controlled by the quantity THRESH TOL in
src/supermodel/supermodel/sumo params.h), the integral in question I(s) is replaced by

I(s) ≈
1
2

(
1 +
δ

t

)
I ([1 + t]s) +

1
2

(
1 −
δ

t

)
I ([1 − t]s) . (5)

This provides a pole mass that varies continuously in scans of input masses near thresholds, and the difference between
our value and the value that would be obtained by a proper resummation should be small.

3.2. Illustration of Results

We now illustrate the effect of the O(α2
s/(16π2)) corrections to gluino and squark pole masses, taking the con-

strained minimal supersymmetric standard model (CMSSM) pattern of MSSM supersymmetry breaking Lagrangian
terms. In the CMSSM, at the gauge unification scale ∼ O(1016) GeV the gaugino masses are set equal to M1/2, the
scalar masses are set to a universal flavour diagonal mass m0 and the soft supersymmetry breaking trilinear scalar

1Note that (before smoothing by the interpolation method adopted here) this kink in the 2-loop computed pole mass is actually infinitely large
as δ→ 0, but in practice it is confined to a small region, because of the 2-loop suppression factor. Therefore, it would usually appear to be finite in
any scan with reasonable increments in masses.
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Figure 3: Effects of the 2-loop SUSYQCD corrections to sparticle pole masses (left panel) and total production cross-sections (right panel), for
a line in CMSSM space with M1/2 = 1 TeV, A0 = −2 TeV, tan β = 10 and µ > 0. In the left panel, ∆(m) = m2-loop/m1-loop − 1, where m2-loop
is the pole mass calculated including the O(α2

s/(16π2)) terms whereas m1-loop is the pole mass calculated at one-loop order. In the right panel,
∆(σ) = σ2-loop/σ1-loop − 1, where σ2-loop is the 13 TeV LHC production cross-section calculated using the O(α2

s/(16π2)) terms in pole masses
whereasσ1 loop is the 13 TeV LHC production cross-section calculated with one-loop pole masses. The label ‘gg’ refers to gluino-gluino production,
‘sg’ to squark-gluino plus antisquark-gluino, ‘ss’ to squark-squark plus antisquark-antisquark, ‘sb’ to squark-antisquark, and ‘tb’ to stop-antistop
production. The cross-sections in each case are obtained at NLL+NLO using NLL-fastv3.1-13TeV [17, 18, 19, 20, 18, 21, 22, 23, 24]. .

couplings are set equal to a massive parameter A0 times the relevant Yukawa coupling. Here, for illustration, we
set M1/2 = 1 TeV, A0 = −2 TeV, the ratio of the MSSM’s two Higgs vacuum expectation values tan β = 10 and
the sign of the Higgs superpotential parameter term µ to be positive. We then allow m0 to vary, and plot the rela-
tive difference caused by the new higher order terms in Fig. 3a. For this illustration, we have not included two-loop
corrections to gauge and Yukawa couplings and three-loop renormalisation group equations for the superpotential
parameters [25], although with them, the results are qualitatively similar. The overall message from the figure is that
differences of percent level order in the pole masses of gluinos and squarks arise from the higher order corrections.
In Fig. 3a, the plot does not extend to larger values of m0/M1/2, because there is no phenomenologically acceptable
electroweak symmetry breaking there (the superpotential µ term becomes imaginary at the minimum of the potential,
indicating a saddle point). The rough size of the two-loop correction is consistent with that estimated in the previous
literature [11, 12, 13]. Note that there are wiggles in the g̃, t̃1, and t̃2 curves, near m0/M1/2 = 1.35, 2.9, and 1.9,
respectively. These are the remnants of the instabilities mentioned in section 3.1 after smoothing by the interpolation
procedure described there, with t = 0.04. These correspond to the thresholds for the decays g̃ → tt̃1 and t̃1 → tg̃ and
t̃2 → tg̃, respectively. Although the remaining wiggles are visible on the plot, they are small in absolute terms, and
are of order the uncertainties due to higher-order corrections.

In Fig. 3b, we show the concomitant effect on the various next-to-leading order sparticle production cross-sections
at the 13 TeV LHC by using NLL-Fast3.1 [17, 18, 19, 20, 18, 21, 22, 23, 24]. NLL-Fast3.1 calculates at the next-
to-leading order (NLO) in supersymmetric QCD, with next-to-leading logarithm (NLL) re-summation. However, it is
based on fixed interpolation tables with only 3 significant digits, resulting in a visible jaggedness of the points in the
figure. Nonetheless, we see that the change in the gluino mass due to next-to-next-to leading order (NNLO) effects
leads to a large 15-25% reduction in the production cross-section. Other sparticle production cross-section modes
shown decrease by more than 5%, thus accounting for these NNLO effects is important in reducing the theoretical
uncertainties. Some of the curves terminate when m0/M1/2 > 2.3 because NLL-Fast3.1 considers the production
cross-sections to be too small to be relevant, and so returns zeroes.

In Fig. 4, we illustrate the renormalization scale (Q) dependences of the computed gluino and squark pole masses,
by varying the scale Q at which the masses are calculated by a factor of 2 around MS US Y =

√mt̃1 mt̃2 . We see the
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Figure 4: Scale dependences of gluino and squark pole mass predictions for the CMSSM with m0 = M1/2 = 1 TeV, A0 = 0, tan β = 10 and µ > 0,
comparing 1-loop and 2-loop approximations. The upper left panel is for the gluino, upper right panel for ũL, lower left panel for t̃1, and lower
right panel for t̃2. In the case of the gluino, the solid line uses the re-expansion of squared mass arguments about the gluino and squark pole masses
as described in [13]; this is the default used by SOFTSUSY for the gluino when the higher-order pole mass calculations are enabled.

expected reduced scale dependence going from 1-loop to 2-loop order. In the case of the gluino, we also see that the
2-loop calculation using a re-expansion around both the squark and gluino pole masses, as described in [13], displays
less renormalization scale dependence than the case where only the gluino mass is re-expanded around its pole mass in
the gluino pole mass calculation, or the case in which no re-expansion is used. This is consistent with the suggestion
in [13] that the perturbation expansion is made more convergent by re-expanding around pole masses rather than
around the running masses. For this reason, the re-expansion method is used as the default by SOFTSUSY when
the higher-order pole masses are enabled. In the cases of the squark masses, the improvement of the renormalization
scale dependence of the computed pole mass is less significant going from 1-loop to 2-loop order. We also note that
in each case, the 2-loop correction is much larger than the scale dependence in the 1-loop result. Thus, as usual, the
renormalization scale dependence gives only a lower bound, and not a reliable estimate, of the remaining theoretical
error.
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4. Summary and Conclusions

Two-loop O(α2
s/(16π2)) are now included in the public release of SOFTSUSY, and so are available for use. We have

demonstrated that along a typical line in CMSSM space, they are responsible for around O(1%) relative changes in
the squark and gluino masses, which will change their various production cross-sections by around 5 − 25%. The
largest 2-loop SUSYQCD pole mass correction is for the gluino, and it increases as the squarks become heavier
than the gluino, reaching 2% when m0/M1/2 = 4. These sources of theoretical error can now be taken into account
and consequently reduced by using the new version of SOFTSUSY. In turn, the connection between measurements
and various Lagrangian parameters (in particular, soft supersymmetry breaking sparticle mass parameters) is made
more accurate. Thus, fits of the MSSM or NMSSM to cosmological and collider data will have a smaller associated
theoretical error (as would studies of the unification of sparticle masses were there to be a discovery and subsequent
measurement of sparticles). Other increases in MSSM or NMSSM mass prediction accuracy await future work: Higgs
mass predictions, gauginos and sleptons, for instance.
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Appendix A. Installation of the Increased Accuracy Mode

In order to have SOFTSUSY use the higher order corrections described in the present paper, the run-time flag should
be set to ensure their employment in the spectrum calculation. We have included a global boolean variable which
controls the higher order corrections at run time:

bool USE_TWO_LOOP_SPARTICLE_MASS - if true, the O(α2
s) corrections are included (corresponds to

the SOFTSUSY Block parameter 22 in the SOFTSUSY block of the SUSY Les Houches Accord input).

By default, the higher order corrections are switched off (the boolean value is set to false), unless the user sets
it in their main program, or in the input parameters (see Appendix B). One can choose to include the two-loop
O(α2

s) corrections to gluino and squark pole masses independently of whether one includes two-loop corrections to
the extracted MSSM value of αs(MZ) or three-loop MSSM renormalisation group equations, as described in Ref. [25].

We remind the reader that the two-loop corrections discussed here are available for use either in the MSSM (with
or without R−parity violation) [26] or in the NMSSM [27].

Appendix B. Running SOFTSUSY in the Increased Accuracy Mode

SOFTSUSY produces an executable called softpoint.x. One can run this executable from command line ar-
guments, but the higher order corrections will be, by default, switched off. One may switch the two-loop O(α2

s)
corrections described in the present paper on with the argument --two-loop-sparticle-masses.

For example:

./softpoint.x sugra --tol=1.0e-5 --m0=250 --m12=100 --a0=-100 --tanBeta=10 --sgnMu=1 \

--two-loop-sparticle-masses --two-loop-sparticle-mass-method=<expandAroundGluinoPole>

The variable expandAroundGluinoPole re-expands the two-loop computation of the gluino mass around the
gluino and squark masses if it is set to 3 (default), around only the gluino mass if set to 2 and performs no expansion
(but still includes the 2-loop corrections) if it is set to 1.

For the calculation of the spectrum of single points in parameter space, one could alternatively use the SUSY Les
Houches Accord (SLHA) [28, 29] input/output option. The user must provide a file (e.g. the example file included in
the SOFTSUSY distribution inOutFiles/lesHouchesInput) which specifies the model dependent input parameters.
The program may then be run with
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./softpoint.x leshouches < inOutFiles/lesHouchesInput

One can change whether the higher order corrections are switched on with SOFTSUSY Block parameter 22 and
the two-loop gluino expansion approximation with parameter 23:

Block SOFTSUSY # Optional SOFTSUSY-specific parameters

22 1.000000000e+00 # Include 2-loop terms in gluino/squark masses

# (default of 0 to disable)

23 3.000000000e+00 # sets expandAroundGluinoPole parameter (default 3)

Parameter 23 is equal to the integer global variable expandAroundGluinoPole.
We are also providing an example user program called higher.cpp, found in the src/ directory of the SOFT-

SUSY distribution. Running make in the main SOFTSUSY directory produces an executable called higher.x, which
runs without arguments or flags. This program illustrates the implementation of the 2-loop SUSYQCD pole masses,
and in particular outputs all of the data used in Figures 3 and 4 above. The file higher.cpp and the output of
higher.x (called twoLoop.dat) are also found as ancillary electronic files with the arXiv submission for this arti-
cle.
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