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Abstract

We describe an extension to theSOFTSUSY program that provides for the calculation of the sparticle spectrum in the
Next-to-MinimalSupersymmetric Standard Model (NMSSM), where a chiral superfield that is a singlet of the Standard
Model gauge group is added to the Minimal Supersymmetric Standard Model (MSSM) fields. Often, aZ3 symmetry
is imposed upon the model.SOFTSUSY can calculate the spectrum in this case as well as the case where generalZ3

violating (denoted as\Z3) terms are added to the soft supersymmetry breaking terms and the superpotential. The user
provides a theoretical boundary condition for the couplings and mass terms of the singlet. Radiative electroweak
symmetry breaking data along with electroweak and CKM matrix data are used as weak-scale boundary conditions.
The renormalisation group equations are solved numerically between the weak scale and a high energy scale using
a nested iterative algorithm. This paper serves as a manual to the NMSSM mode of the program, detailing the
approximations and conventions used.
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1. Program Summary

Program title:SOFTSUSY
Program obtainable from:http://softsusy.hepforge.org/
Distribution format:tar.gz
Programming language:C++, fortran
Computer:Personal computer.
Operating system:Tested on Linux 4.x
Word size:32 bits.
External routines:None.
Typical running time:A few seconds per parameter point.
Nature of problem:Calculating supersymmetric particle spectrum and mixing parameters in the next-to-minimal
minimal supersymmetric standard model. The solution to therenormalisation group equations must be consistent
with boundary conditions on supersymmetry breaking parameters, as well as on the weak-scale boundary condition
on gauge couplings, Yukawa couplings and the Higgs potential parameters.
Solution method:Nested iterative algorithm and numerical minimisation of the Higgs potential.
Restrictions:SOFTSUSY will provide a solution only in the perturbative regime and it assumes that all couplings of
the model are real (i.e.CP−conserving). If the parameter point under investigation isnon-physical for some reason
(for example because the electroweak potential does not have an acceptable minimum),SOFTSUSY returns an error
message.
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2. Introduction

While TeV-scale supersymmetric particles have not yet beenfound1 at the LHC [1, 2], searches for them continue
along with continuing strong theoretical interest in supersymmetric (SUSY) models. This is a testament to the theoret-
ical successes of weak-scale supersymmetry: chiefly the resolution of the technical hierarchy problem, improvement
of the apparent unification of Standard Model (SM) gauge couplings and the provision of a potential dark matter
candidate. In order to pursue SUSY phenomenology, a long calculational chain is required [3]. Typically, this chain
begins with the calculation of the supersymmetric spectrum, including the couplings of the various sparticles and
Higgs bosons. Currently, in the Minimal Supersymmetric Standard Model (MSSM), there are several spectrum gen-
erators:ISASUSY [4], SOFTSUSY [5], SPheno [6], SUSEFLAV [7] andSUSPECT [8]. Information from these spectrum
generators is then passed to other programs (for example those that calculate decays, that simulate collider events, or
that calculate the thermal relic density of dark matter) viadata in the SUSY Les Houches Accord format [9].

Recently a boson was discovered in the CMS and ATLAS experiments at over the 5−σ level [10, 11] with proper-
ties consistent with the SM Higgs boson. Using 4.8 fb−1 of 7 TeV data and 20.7 fb−1 of 8 TeV data, ATLAS measures
the mass to bemh = 125.5±0.2+0.5

−0.6 GeV by combining theH → γγ andH → ZZ decay channels [12]. In CMS, these
channels give the combined constraintmh = 125.3±0.4±0.5GeV in 5.1 fb−1 of 7 TeV data and 5.3 fb−1 of 8 TeV data.
In the MSSM, one can often obtain a CP even Higgs that couples in a similar way to the Standard Model Higgs boson.
At tree-level, its mass is bounded bymh0 < MZ, at odds with the LHC experiments’ mass measurements. However,
the radiative corrections to the CP even Higgs mass can be sizeable, particularly those from stops. The corrections
are larger if the stops are heavy, and if they are heavily mixed. Indeed, the MSSM has enough flexibility [13] such
that the experimental values ofmh0 are achievable with TeV-scale stops and large mixing. On theother hand, these
relatively heavy stops reintroduce the little hierarchy problem, requiring cancellation (at the level of one in several
tens) between apparently unrelated parameters in the MSSM Higgs potential. Thus, we have the well known corre-
lation [14] between a higher Higgs massmh0 > 106 GeV and a higher level of apparently unnatural cancellation. In
several well-studied simple models of supersymmetry breaking mediation, the problem is much exacerbated [15].

In order to reduce the unnatural cancellations implied by the Higgs mass measurement [16, 17, 18, 19, 20], one
can augment the MSSM by a gauge singlet chiral superfield [21,22, 23]. This model is referred to as the Next-to-
Minimal Supersymmetric Standard Model (NMSSM) [24]. We shall distinguish between a version where an extra
symmetry is assumed (often aZ3 symmetry) and a version where it is not (\Z3) [16, 25, 26, 27]. In the MSSM, (based
on a two Higgs doublet version of the SM with softly brokenN = 1 global supersymmetry) the tree-level bound upon
the Higgs mass comes from the fact that the quartic Higgs couplings are related to the electroweak gauge couplings
by supersymmetry. The Higgs potential is modified by the addition of a gauge singlet, and the resulting lightest
CP even Higgs boson can receive additional positive corrections to its mass at tree-level. In addition, the neutral
Higgs potential (now a function of three fields rather than two in the MSSM) is heavily modified, with associated
potential reductions in the unnatural cancellations. Along with other factors this had lead to considerable interest in
the NMSSM in the recent literature and benchmarks points with a 125 GeV Higgs have already been proposed [28]. It
is therefore essential for the research community to have access to a variety of reliable computational tools to calculate
the relevant NMSSM observables.

As mentioned above in the MSSM case, the initial step in a calculational chain is typically spectrum and cou-
plings calculation. Currently, there is one out-of-the-box packageNMSPEC [29] which calculates the spectrum of
the NMSSM, matching weak-scale data with theoretical boundary conditions on supersymmetry breaking and Higgs
potential parameters. However, one can also marrySARAH [30, 31, 32, 33] withSPheno [6] in order to be able to
calculate the spectrum after setting up the model. The NMSSMwas included in an extended version of the SUSY Les
Houches Accord [34] so that this information may be passed toprograms performing other calculations. For instance,
NMHDECAY [35] is capable of calculating the NMSSM Higgs decays, andNMSDECAY [36, 37] calculates sparticle de-
cays.PYTHIA [38] is then capable of simulating particle collisions in the NMSSM and, in addition,micrOMEGAs [39]
can calculate the thermal dark matter relic density.

Having several public spectrum generators for the MSSM has proved fruitful for the community. As well as
comparisons and bug-finding, the various generators have different levels of approximations and are able to calculate

1In some cases, lower bounds of 1 TeV or more have been placed upon gluinos and squarks by LHC experiments.
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in different generalisations of the MSSM. For example, some are easier (or harder) to use for certain assumptions
about supersymmetry breaking mediation. The advantages ofhaving several supported, publicly available spectrum
generators naturally also extends to the case of the increasingly popular NMSSM. The extension ofSOFTSUSY to
include the NMSSM will hopefully aid the accuracy and feasibility of a variety of NMSSM studies.

In the present paper, we focus on the recent components that have been added toSOFTSUSY in order to include the
effects of the gauge singlet superfield. Up-to-date versions ofthis manual (along with otherSOFTSUSY manuals) will
be released along with the code in thedoc/ subdirectory. The other manuals in this subdirectory detail the standard
R−parity conserving MSSM [5], theR−parity violating MSSM [40] and the loop-level neutrino masscomputation
in the R−parity violating MSSM [41]. The remainder of the paper proceeds as follows: in section 3, we introduce
the NMSSM supersymmetric parameters and the soft supersymmetry breaking parameters using our conventions. In
section 4, we describe the algorithm employed to calculate the spectrum of masses and couplings of NMSSM particles,
detailing our level of approximation for various parts of the calculation. More technical information is relegated to
the appendices. In section Appendix A, we explain how to run the program. The class structure, along with the
data contained within each class, is shown in section Appendix C. Finally, in section Appendix D, we reproduce the
renormalisation group equations of the NMSSM to two-loops including the full 3 by 3 flavour structure.

3. NMSSM Parameters

In this section, we introduce the NMSSM parameters in theSOFTSUSYconventions. The translations to the variable
names used in the program code are shown explicitly in section Appendix C.

3.1. Supersymmetric parameters

The chiral superfield particle content of the NMSSM has the following S U(3)c×S U(2)L×U(1)Y quantum numbers

L : (1, 2,− 1
2) , Ē : (1, 1, 1) , Q : (3, 2, 1

6) , Ū : (3, 1,− 2
3) ,

D̄ : (3, 1, 1
3) , H1 : (1, 2,− 1

2) , H2 : (1, 2, 1
2) , S : (1, 1, 0) . (1)

S is the gauge singlet chiral superfield that is particular to the NMSSM.L, Q, H1, andH2 are the left-handed doublet
lepton and quark superfields and the two Higgs doublets.Ē, Ū, andD̄ are the lepton, up-type quark and down-type
quark right-handed superfield singlets, respectively. Note that the lepton doublet superfieldsLa

i and the Higgs doublet
superfield coupling to the down-type quarksH have the same SM gauge quantum numbers. We denote anS U(3)
colour index of the fundamental representation by{x, y, z} ∈ {1, 2, 3}. TheS U(2)L fundamental representation indices
are denoted by{a, b, c} ∈ {1, 2} and the generation indices by{i, j, k} ∈ {1, 2, 3}. ǫxyz = ǫ

xyz andǫab = ǫ
ab are totally

antisymmetric tensors, withǫ123 = 1 andǫ12 = 1, respectively. Currently, only real couplings in the superpotential
and Lagrangian are included.

The full renormalisable,R−parity conserving superpotential is given by

W\Z3 = ǫab

[
(YE)i j L

b
i Ha

1Ē j + (YD)i j Q
bx
i Ha

1D̄ jx + (YU)i j Q
ax
i Hb

2Ū jx + (λS + µ)(Ha
2Hb

1)
]
+ ξFS +

µ′

2
S2 +

κ

3
S3 (2)

=Wµ=0
MSSM + ǫab

[
(λS + µ)(Ha

2Hb
1)

]
+ ξFS +

µ′

2
S2 +

κ

3
κS3 (3)

where the subscript\Z3 reflects the fact that this superpotential contains terms which violate theZ3 symmetry that is
commonly imposed on the NMSSM. Imposing theZ3 symmetry restricts the superpotential to

WZ3 = ǫab

[
(YE)i j L

b
i Ha

1Ē j + (YD)i j Q
bx
i Ha

1D̄ jx + (YU)i j Q
ax
i Hb

2Ū jx + λS(Ha
2Hb

1)
]
+
κ

3
S3 (4)

=Wµ=0
MSSM + ǫabλS(Ha

2Hb
1) +

κ

3
S3. (5)

TheZ3-NMSSM superpotential Eq. (5) contains no explicit mass parameter, thereby allowing a solution to theµ-
problem when the singlet field acquires a Vacuum ExpectationValue (VEV) and generates an effectiveµ term of the
right size. As such, it is sometimes referred to as the scale invariant NMSSM in the literature. In this paper, we will
always writeZ3-NMSSM for theZ3 conserving case Eq. (5) and\Z3-NMSSM for the generalZ3 violating one Eq. (3).
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For parameters common to both the MSSM and either theZ3-NMSSM or \Z3-NMSSM, a comparison of the
SOFTSUSY conventions and the literature can be found in Table 1 of the MSSMSOFTSUSY manual [5]. Elsewhere,
our conventions are those of the SUSY Les Houches Accord [34]and thus consistent with the review of Ellwanger,
Hugonie and Teixeira (EHT) [22] and also Ref. [42]. (Note however that our definitions of the neutral Higgs VEVs
(section 3.3) differ by a factor of

√
2 compared to Refs. [22, 42].)

3.2. Next-to-minimal SUSY breaking parameters
The soft breaking scalar potential is given by

Vsoft = V3 + V2

∣∣∣
m2

3=0
+m2

S|S|2 + ǫabλAλS Ha
2Hb

1 +
κAκ

3
S3 + V\Z3 , (6)

where all \Z3 terms are included in

V\Z3 = ξSS +
m′ 2S

2
S2 + ǫabm

2
3Ha

2Hb
1 + h.c.. (7)

Expressions for the trilinear scalar interaction potential V3 and scalar bilinear SUSY breaking potentialV2 of the
MSSM are given in Sect. 2.2 of theSOFTSUSY manual [5] for theR-parity conserving MSSM. The notationV2

∣∣∣
m2

3=0

indicates that the\Z3 soft bilinear massm2
3 present inV2 is set to zero to avoid double counting with the third term in

Eq. (7).

3.3. Higgs potential and electroweak symmetry breaking
At tree-level, the Higgs potential is given by

VHiggs = VH
F + VH

D + VH
soft (8)

= Vµ=0
MSSM + VHN

F + VHN
soft , (9)

where

VHN
F = |λS + µ|2(|H2|2 + |H1|2) + |λH2H1 + κS

2 + µ′S + ξS|2 , (10)

VHN
soft = m2

S|S|2 +
(
λAλS H2H1 +

κ

3
AκS

3 +
m′ 2S

2
S2 + ξSS + h.c.

)
. (11)

The three neutral Higgs fields then pick up VEVs

〈H0
1〉 =

1√
2

(
v1

0

)
, 〈H0

2〉 =
1√
2

(
0
v2

)
, 〈S〉 = 1√

2
s, (12)

which are related to the soft masses via the minimization conditions:

m2
H1
= −

M2
Z

2
cos(2β) − λ

2

2
v2

2 + (m2
3)eff tanβ − |µeff|2 , (13)

m2
H2
=

M2
Z

2
cos(2β) − λ

2

2
v2

1 +
(m2

3)eff

tanβ
− |µeff|2 , (14)

m2
S = −κ2s2 − λ

2

2
v2 + κλv2v1 + λAλ

v2v1√
2s
− κAκs−m′ 2S − µ′ 2 + 2κξF − 3κsµ′ . (15)

We have tanβ = v2/v1, and for simplicity we have introduced

(m2
3)eff ≡

λs√
2

Beff + m̂2
3 , (16)

and

µeff ≡ µ +
λs√

2
, Beff ≡ Aλ +

κs√
2
, m̂2

3 ≡ m2
3 + λ

(
µ′s√

2
+ ξF

)
. (17)
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3.4. Tree-level masses

The chargino and sfermion masses are obtained by substituting µ → µeff into the MSSM expressions. The neu-
tralino mass matrix is contained in the Lagrangian term− 1

2ψ̃
0TMψ̃0ψ̃0 + h.c., whereψ̃0 = (−ib̃, −iw̃3, h̃1, h̃2, s̃)T

and

Mψ̃0 =



M1 0 −MZcβsW MZsβsW 0
0 M2 MZcβcW −MZsβcW 0

−MZcβsW MZcβcW 0 −µ −λv2

MZsβsW −MZsβcW −µ 0 −λv1

0 0 0 0 2κs+ µ′


. (18)

We uses andc for sine and cosine, so thatsβ ≡ sinβ, cβ ≡ cosβ andsW(cW) is the sine (cosine) of the weak mixing
angle. The 5 by 5 neutralino mixing matrix is an orthogonal matrix O with real entries, such thatOTMψ̃0O is diagonal.
The neutralinosχ0

i are defined such that their absolute masses increase with increasingi. Note that some of their mass
values can be negative.

The CP-even gauge eigenstates (H0)T = (H0
1, H0

2, S) are rotated into mass eigenstates (h0)T = (h1, h2, h3) by a
mixing matrixR,

h0 = RH0 . (19)

The mass matrix arises from the Lagrangian term−(H0)T M2
H0H

0, where

M2
H0 =



∂2V
∂2v1

− 1
v1

∂V
∂v1

∂2V
∂v1∂v2

∂2V
∂v1∂s

∂2V
∂v2∂v1

∂2V
∂2v2

− 1
v2

∂V
∂v2

∂2V
∂v2∂s

∂2V
∂s∂v1

∂2V
∂s∂v2

∂2V
∂2s
− 1

s
∂V
∂s



, (20)

and we have rewritten the elements ofM2
H0 by imposing tree-level electroweak symmetry breaking (EWSB) substitu-

tion on the the double derivatives of the effective potential. This is equivalent to defining

(M2
H0)i j ≡

∂2V
∂vi∂v j

−
δi j

vi

∂V
∂vi

(21)

with v3 ≡ s. The explicit elements of the matrix are

(M2
H0)11 = M2

Zc2
β +

(
λs√

2
Beff + m̂2

3

)
tanβ , (22)

(M2
H0)12 = (4λ2 − g2)

v2v1

4
− λs√

2
Beff − m̂2

3 , (23)

(M2
H0)13 = λ

[
2µeff

v1√
2
− (Beff + κs+ µ

′)
v2√

2

]
, (24)

(M2
H0)22 = M2

Zs2
β +

(
λs√

2
Beff + m̂2

3

)
/ tanβ (25)

(M2
H0)23 = λ

[
2µeff

v2√
2
− (Beff +

κs√
2
+ µ′)

v1√
2

]
, (26)

(M2
H0)33 =

λ√
2

(Aλ + µ
′)

v2v1

s
+
κs√

2
(Aκ + 4

κs√
2
+ 3µ′) −

√
2(ξS + ξFµ

′)/s. (27)

The three imaginary components of the neutral Higgs fields (H I )T = (H I
1,H

I
2,S

I ) mix to give the two physical CP
odd bosonsA1,2 and the Goldstone bosonG0. A mixing matrixP relates the two bases

a = PHI , (28)
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whereaT = (G0,A1,A2). Here,P matches the conventions of [42], while deleting the first rowfrom P produces the
2 by 3 mixing matrix for the physical CP-odd Higgs bosons in SLHA2 conventions [34]. Following EHT [22], the
entries of the 3 by 3 mass matrixM′ 2P in theH I basis read

(M′ 2P )11 =

(
λs√

2
Beff + m̂2

3

)
tanβ, (29)

(M′ 2P )12 =
λs√

2
Beff + m̂2

3, (30)

(M′ 2P )13 = λvu(Aλ − 2κs− µ′), (31)

(M′ 2P )22 =

(
λs√

2
Beff + m̂2

3

)
/ tanβ, (32)

(M′ 2P )23 = λvd(Aλ − 2κs− µ′) (33)

(M′ 2P )33 = λ(Beff + 3κs+ µ′)
vuvd

s
− 3κAκs− 2m′2S − κµ′s− ξF

(
4κ +

µ′

s

)
− ξS

s
. (34)

where tree-level EWSB has been imposed.
Note that — as in the MSSM — the mixing of the Goldstone bosonG0 depends only on tanβ. As shown in EHT

[22], this can be seen by first performing a rotation byβ, which convertsM′ 2P to be block diagonal. The resulting 2 by
2 submatrix may then be diagonalised. Therefore the CP-odd mixing can be stored as a single mixing angle.2

Finally, the charged Higgs fields in the mass basis contain one massless charged Goldstone bosonG+ and a charged
Higgs,H± with mass

m2
H± =

(
λs√

2
Beff + m̂2

3

)
(tanβ + cotβ) + M2

W −
λ2v2

2
. (35)

4. Calculation Algorithm

We now describe the algorithm used to perform the calculation. The full iterative algorithm to determine the mass
spectrum is shown schematically in Fig. 1. Here we will provide a detailed description of this procedure and specify
all contributions that are included in the calculation.

As in MSSMSOFTSUSY, the SM fermion and gauge boson masses, and the couplingsα(MZ), Gµ

F , andαs(Mz) act
as low energy constraints. BelowMZ, the evolution of these input parameters proceeds in the manner described in
Sect. 3.1 of the MSSMSOFTSUSY manual [5]. Similarly, the initial guess for the SUSY preserving DR parameters
at mt follows the procedure outlined in Sect. 3.2 of [5], with the additional NMSSM parameters{λ, κ, s, ξF , µ

′} either
initially set to their (user specified) input values, or to zero in the case whenκ ands are treated as outputs from the
EWSB conditions (section 4.2).

4.1. Running of NMSSM couplings

Following the initial guess atmt, the two-loopβ functions of the\Z3-NMSSM are used to evolve the SUSY
preserving parameters to a user specified scaleMX. If gauge unification has been specified as a boundary condition,
MX is revised to leading-log order to provide a more accurate value upon the next iteration:

Mnew
X = MX exp

(
g2(MX) − g1(MX)
g′1(MX) − g′2(MX)

)
, (36)

where primes denote derivatives calculated to two-loop order.
In all stages of the calculation, the evolution of the NMSSM parameters is governed by three family, two-loop

renormalization group equations (RGEs), whose form [43, 44] for a general,N = 1 semi-simple SUSY gauge theory

2SOFTSUSY does this internally by storingθA0 in thesPhysical object (see Eq. (Appendix C.4)). Note that the SLHA output gives the 3 by 2
mixing matrix and thus matches SLHA2 conventions.

6



7. Calculate Higgs and sparticle pole masses. Run toMZ.

6. Run toMZ.
❄

5. Run toMX. Apply soft breaking and NMSSM SUSY boundary conditions.
❄

4. EWSB with iterative solution forµeff, outputs{s, κ,mS} in Z3-NMSSM and{µ,m2
3, ξS} in \Z3-NMSSM.

❄

3. Run toMS US Y.
convergence

✲

❄

❄

1. SUSY radiative corrections togi(MZ).

2.SUSY radiative corrections toht,b,τ(MZ).

✛

Figure 1: Iterative algorithm used to calculate the NMSSM spectrum. The initial step is the uppermost one.MS US Y is the scale at which the EWSB
conditions are imposed, as discussed in the text.MX is the scale at which the high energy SUSY breaking boundary conditions are imposed.

is known. From these general results, it is possible to derive the explicit expressions of the RGEs in a chosen model
(e.g. the work of Martin and Vaughn [43] provides a complete list of the RGEs for the MSSM).

In the case of the NMSSM considered here, it is a simple task togeneralize the MSSM expressions [43] to include
contributions due to superpotential parameters such asλ and their soft SUSY-breaking counterpartsaλ. (Naturally,
the RGEs for such parameters must be derived separately.) The two-loop RGEs for the\Z3-NMSSM are presented in
the review by EHT [22], with the the third family approximation

YU ≈


0 0 0
0 0 0
0 0 yt

 , YD ≈


0 0 0
0 0 0
0 0 yb

 , YE ≈


0 0 0
0 0 0
0 0 ye

 , (37)

imposed to simplify the resulting expressions. However, inSOFTSUSY the whole calculation is performed with quark
flavor-mixing between all three families, so it is necessaryto derive the additional NMSSM contributions from the
general RGEs [43, 44]. The resulting expressions are collected in section Appendix D and in each case we have found
agreement with the results of EHT [22] once the third family approximation Eq. (37) is enforced. Note that in the
SOFTSUSY conventions, allβ functions are real. We also incorporate the two-loop running for tanβ and the Higgs
VEVs v1,2 and s. Here, we make use of the results obtained by Sperling et al. [45, 46], where the pure NMSSM
contributions are reproduced in section Appendix D. The program can be made to run faster by switching off the two-
loop renormalization of the scalar masses and tri-linear scalar couplings. Once the user-supplied boundary conditions
are applied atMX, the whole ensemble of NMSSM soft breaking and SUSY preserving couplings are evolved toMZ.
The inclusion of radiative corrections to the gauge and Yukawa couplings (steps 1 and 2 in Fig. 1), and NMSSM
renormalization (step 3) is analogous to MSSMSOFTSUSY — for details we refer the reader to sections 3.3 and 3.4 of
theSOFTSUSY manual [5].

4.2. Low energy boundary conditions and electroweak symmetry breaking

The three electroweak symmetry breaking (EWSB) conditionsallow the central value of theZ pole massMZ to be
taken as input, thereby constraining three parameters. Eqs. (13) and (14) can be rewritten in terms ofµ2

eff and (m2
3)eff,
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as in the MSSM. Including tadpole correctionsti and the transverse self energyΠT
ZZ of the Z boson, the resulting

expressions are

µ2
eff(MS US Y) =

m2
H1

(MS US Y) −m2
H2

(MS US Y) tan2 β(MS US Y)

tan2 β(MS US Y) − 1
− 1

2
M2

Z
(MS US Y) (38)

(m2
3)eff(MS US Y) =

sin 2β(MS US Y)
2

{
m2

Hu
(MS US Y) +m2

Hd
(MS US Y) + 2µ2

eff(MS US Y)

[
1+

M
2
z

g2s2
(MS US Y)

]}
. (39)

Here, m2
H i
= m2

Hi
− ti/vi , M2

Z
(MS US Y) = M2

Z + ℜeΠT
ZZ(MS US Y) is the DR running (mass)2 of the Z boson, and

g = (g2
2 + g′2)1/2 whereg2 andg′ =

√
3/5g1 are the gauge couplings ofS U(2)L and (unnormalised)U(1) interactions

respectively. Through Eqs. (38) and (39) we can fixµe f f and (m2
3)eff in a similar manner to the MSSM. Note however,

that in this case these areeffectiveparameters constructed from several model parameters, so we must select which of
the latter are fixed. In theZ3-NMSSM, we fixs via Eq. 38 andκ via Eq. 39, and use the third EWSB condition to fix
m2

S. In the \Z3-NMSSM, we have more freedom and can choose to fixµ andm2
3 — as in the MSSM — and use the

third EWSB condition to fixξS.
The full one-loop tadpole corrections from [42] are implemented, along with NMSSM two-loopO(αtαs) and

O(αbαs) contributions [42] to the tadpoles.3 The two loop corrections from the MSSM are used forO(α2
t ), O(αbατ),

O(α2
b), O(α2

τ) andO(αtαb), though it should be noted that these are not complete in theNMSSM. In both one-loop
and two-loop cases, the tadpole corrections themselves depend on the output from the EWSB conditions, therefore an
iteration is employed to find a self consistent solution. After the EWSB iteration converges, the whole set of NMSSM
parameters are run tomZ. As detailed in Section 3.3 of [5], the gauge couplingsg1, g2 andg3 (whereg1 is the GUT
normalised gauge coupling ofU(1)Y) and third familyDR Yukawa couplings,yt, yb andyτ are fixed, including the
precision corrections atMZ. Note however, that the expressions for the one-loop self energies of the gauge bosons
and fermions are modified to match those given in [42] for the NMSSM.

SOFTSUSY calculates corrections to sinθW following the procedure outlined in [47]. We use the same procedure
in the NMSSM, with self energies generalised to NMSSM and using the NMSSM the lightest Higgs mass and the
coupling which will match that of the MSSM when in the MSSM limit. This ensures a simple simple MSSM limit for
threshold corrections.

In the \Z3-NMSSM, the parametersκ, s, ξF andµ′ are reset to their input values atMZ. The parameters are then
evolved back toMSUSY whereM2

Z and tanβ are predicted as part of a consistency check. If the user has specified that
λ is to be input at the SUSY scale thenλ is set here.

In general, the scalar Higgs potential (in both theZ3- and \Z3-NMSSM) can possess several local minima [22], so
we include a test atMSUSY to determine whether the chosen parameter space point corresponds to a global minimum
(as done in theNMSPEC [29] CHECKMIN routine). The test works by comparing the value of the physical potential at
the VEVsvu, vd, s against scenarios where two or more VEVs are zero. We includeone-loop radiative corrections to
the effective potential from third generation quarks and squarks;corrections from other sfermions are negligible due
to their small Yukawa couplings. The parameters are then evolved back up toMX and the procedure is repeated until
convergence is achieved, as shown in Fig. 1.

4.3. NMSSM spectrum

After the iteration has converged we calculate the pole masses. The Higgs pole masses are calculated using one-
loop self energies from Degrassi and Slavich [42], with additional \Z3 contributions to the triple Higgs couplings
included (see Appendix A of EHT [22]). Two-loop corrections[42] of O(αtαs) andO(αbαs) are incorporated via
FORTRAN files provided by Pietro Slavich. Contributions of orderO(α2

t ), O(αbατ), O(α2
b), O(α2

τ) andO(αtαb) are
included from the MSSMFORTRAN files (also supplied by Pietro Slavich), but we note that these expressions receive
additional NMSSM contributions which are currently unavailable. Consequently, our calculation is not correct to this
order, but rather toO(αtαs) andO(αbαs). Nevertheless, the higher order MSSM contributions provide (a) a good
approximation in the vicinity of the MSSM limit , and (b) easier comparisons against MSSM results.

3We thank Pietro Slavich for kindly supplying us with theFORTRAN files.
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The sfermions, neutralinos and charginos also receive new NMSSM corrections to their self energies. To the best
of our knowledge, the required expressions are presented only in [48]. However, we found a number of typographical
errors in the published results [48], whose origin4 was due to the need to manually condense the auto-generated
LATEX output fromSARAH [30, 31, 32, 33]. In particular, the self energy expressionsgenerated bySARAH do not
contain these errors. Therefore, we used a combination of results listed in [48], auto-generated LATEX output from
SARAH for the self energies, plus individual checks of our own. Finally, all one-loop self energies, tadpole corrections,
and two-loop RGEs were unit tested against code pieces auto-generated fromFlexibleSUSY [49], an in development
MATHEMATICA package for generatingC++ code which makes use of the aforementionedSARAH package.
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Appendix A. Running SOFTSUSY

SOFTSUSY produces an executable calledsoftpoint.x. For the calculation of the spectrum of single points in
parameter space, we recommend the SUSY Les Houches Accord 2 (SLHA2) [34] input/output option. The user must
provide a file (e.g. the example file included in theSOFTSUSY distributionrpvHouchesInput), that specifies the model
dependent input parameters. The program may then be run with

./softpoint.x leshouches < nmssmHouchesInput

For the SLHA2 input option, the output will also be given in SLHA2 format. Such output can be used for input into
other programs which subscribe to the accord, such asPYTHIA [38] (for simulating sparticle production and decays
at colliders), for example. For further details on the necessary format of the input file, see Ref. [34]. It supports the
setting of all other SLHA2 input blocks associated with non-complex couplings. The default output is in SLHA2
format, the conventions of which are explained in Ref. [34].

As of SOFTSUSY3.4, the command line interface ofsoftpoint.x has changed, seesoftpoint.x --help. For the
MSSM the new syntax is

./softpoint.x <susy-breaking-model> [susy-breaking-model options] [general options]

where the available SUSY-breaking models are listed in Table A.1 and the general options are listed in Table A.2.
For the NMSSM, the syntax is

./softpoint.x nmssm <susy-breaking-model> [NMSSM flags] [NMSSM parameters] [general options]

wheresugra is the only currently available susy-breaking model. The general options are listed in Table A.2 and the
NMSSM flags and parameter options are listed in Table A.3.

4F. Staub, private communication.
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susy-breaking model susy-breaking model option description
sugra --m0=<value> unified soft scalar mass

--m12=<value> unified soft gaugino mass
--a0=<value> unified trilinear coupling

amsb --m0=<value> unified soft scalar mass
--m32=<value> gravitino mass

gmsb --n5=<value> number ofS U(5) mulitplets
--mMess=<value> messenger scale
--LAMBDA=<value> SUSY breaking scale< FS > / < S >

--cgrav=<value> Gravitino mass scaling factor

Table A.1: MSSM command line options forsoftpoint.x

general option description

--mbmb=<value> bottom massmMS
b (mb)

--mt=<value> top massmpole
t

--alpha s=<value> strong couplingαMS
s (MZ)

--QEWSB=<value> EWSB scale
--alpha inverse=<value> inverse electromagnetic cougling 1/αMS

em (MZ)
--tanBeta=<value> tanβ
--sgnMu=<value> signµ
--mgut=unified define unification scaleMX by g1(MX) = g2(MX)
--mgut=msusy set unification scale toMSUSY

--mgut=<value> set unification scale to fixed value

Table A.2: General command line options forsoftpoint.x

Appendix B. Calculating decays with NMSSMTools

SOFTSUSYhas a compatibility mode which interfaces withNMSSMToolsto calculate sparticle decays in the NMSSM.
To enable it, the user has to first installNMSSMToolsand then run thesetup nmssmtools.sh script

$ cd /path/to/NMSSMTools/

$ wget http://www.th.u-psud.fr/NMHDECAY/NMSSMTools_4.1.2.tgz

$ tar xf NMSSMTools_4.1.2.tgz

$ cd /path/to/softsusy/

$ ./setup_nmssmtools.sh \

--nmssmtools-dir=/path/to/NMSSMTools/NMSSMTools_4.1.2 \

--compile

Thesetup nmssmtools.sh script copiesnmProcessSpec.f andMakefile.nmssmtools from theSOFTSUSY directory
to themain/ directory within theNMSSMToolsfolder. If the--compile flag is provided,NMSSMToolsis recompiled.
Afterwards the user can generate a NMSSM spectrum withSOFTSUSY and useNMSSMToolsto calculate the decays.
Thesoftsusy nmssmtools.x script combines these two steps:

$ ./softsusy_nmssmtools.x leshouches < slhaInput > slhaOutput

HereslhaInput is an SLHA input file with the SOFTSUSY block entry 15 set to 1. AdditionalNMSSMToolsspecific
flags can also be used with entries 16 and 17, which are past toNMSSMToolsas MODSEL blocks 9 and 10 respectively,
following theNMSSMToolsconvention.

Block SOFTSUSY

15 1 # NMSSMTools compatible output (default: 0)
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NMSSM flags description
--lambdaAtMsusy inputλ at scaleMS US Y

NMSSM parameters description
--m0=<value> unified soft scalar mass
--m12=<value> unified soft gaugino mass
--a0=<value> unified trilinear coupling
--tanBeta=<value> tanβ
--mHd2=<value> soft down-type Higgs mass squaredm2

H1

--mHu2=<value> soft up-type Higgs mass squaredm2
H2

--mu=<value> µ parameter
--BmuOverCosBetaSinBeta=<value> Bµ/(cosβ sinβ)
--lambda=<value> trilinear superpotential couplingλ
--kappa=<value> trilinear superpotential couplingκ
--Alambda=<value> trilinear soft couplingAλ

--Akappa=<value> trilinear soft couplingAκ

--lambdaS=<value> λ〈S〉 = λs/
√

2
--xiF=<value> linear superpotential couplingξF

--xiS=<value> linear soft couplingξS

--muPrime=<value> bilinear superpotential couplingµ′

--mPrimeS2=<value> bilinear soft couplingm′2S
--mS2=<value> bilinear soft massm2

S

Table A.3: NMSSM command line options forsoftpoint.x

16 4 # Select Micromegas option for NMSSMTools

# (default: 0) 0=no, 1=relic density only

# 2=direct detection + relic density,

# 3=indirect detection + relic density

# 4=all

17 1 # 1:sparticle decays via NMSDECAY (default: 0)

After softsusy nmssmtools.x is called, the following three output files can be found in theNMSSMToolsdirectory
NMSSMTools 4.1.2/main/: The file nmProcessSpec-decay contains the sparticle decays in form of SLHA DECAY
blocks,nmProcessSpec-omega will contain the output frommicrOMEGAS if entry 16 is selected to be non-zero and
nmProcessSpec-spectr contains the spectrum calculated byNMSSMTools.

Appendix C. Class Structure

We now go on to sketch the NMSSM class hierarchy. Only methodsand data which are deemed of possible
importance for prospective users are mentioned here, but there are many others within the program itself.

Appendix C.1. General structure

To implement the NMSSM (and other non-minimal supersymmetric models), theSOFTSUSY class hierarchy was
generalized with the following requirements in mind:

• The class of supersymmetric parameters (gauge couplings, superpotential parameters and VEVs), whose beta
functions are independent of soft-breaking parameters, should be at the top of the class hierarchy. This makes
them usable independently of the soft-breaking parameters, for example during the initial guess.

• One should be able to reuse as much MSSM code as possible, for example by inheriting from existing MSSM
classes.
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RGE

MssmSusy

SoftPars<MssmSusy>

= SoftParsMssm

Softsusy<SoftParsMssm>

= MssmSoftsusy

RGE

MssmSusy

NmssmSusy

SoftPars<NmssmSusy>

SoftParsNmssm

Softsusy<SoftParsNmssm>

NmssmSoftsusy

Figure C.2: Heuristic high-level class structure ofSOFTSUSY. Inheritance is displayed by the arrows andtypedefs are displayed by the equals
signs.

The above requirements were implemented by the following changes:

1. The class of the soft breaking MSSM parameters and their beta functions was converted into the class tem-
plateSoftPars<Susy>. The template parameter represents the class of supersymmetric parameters, from which
SoftPars<Susy> inherits. The class which containsall MSSM parameters and beta functions,SoftParsMssm,
was made a typdef forSoftPars<MssmSusy>, whereMssmSusy is the class that contains the supersymmetric
MSSM parameters and beta functions.

template <class Susy>

class SoftPars : public Susy {

// implementation of soft breaking MSSM parameters

// and their beta functions

};

typedef SoftPars<MssmSusy> SoftParsMssm;

This approach makes it possible to have a class of soft breaking MSSM parameters but with a different set of
supersymmetric parameters. This mechanism is used in the NMSSM, see Section Appendix C.3.

2. The class which organises the MSSM mass spectrum calculation was converted into the class templateSoftsusy<SoftPars>.
The template parameter represents the class of all model parameters and beta functions, from whichSoftsusy<SoftPars>

inherits.MssmSoftsusy was made atypedef for Softsusy<SoftParsMssm>.

template <class SoftPars>

class Softsusy : public SoftPars {

// organisation of MSSM mass spectrum calculation

// using model parameters in SoftPars

};

typedef Softsusy<SoftParsMssm> MssmSoftsusy;

This approach makes it possible to have a MSSM spectrum calculation class but with an arbitrary set of model
parameters. This mechanism is used in the NMSSM, see Appendix C.4.
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data variable methods
double lambda, kappa trilinear superpotential displayLambda

λ, κ couplings displayKappa

double mupr bilinear superpotential displayMupr

µ′ coupling
double xiF linear superpotential displayXiF

ξF coupling
double sVEV VEV of singlet field displaySVEV

s

Table C.4:NmssmSusy class data and accessor methods

data variable methods
double alambda, akappa trilinear soft displayTrialambda

aλ, aκ parameters displayTriakappa

Aλ aλ/λ displaySoftAlambda

Aκ aκ/κ displaySoftAkappa

double mSpsq bilinear soft displayMspSquared

m′2S parameters
double mSsq soft scalar mass displayMsSquared

m2
S

double xiS linear soft displayXiS

ξS parameters

Table C.5:SoftParsNmssm class data and accessor methods

Appendix C.2.NmssmSusy class

The class of supersymmetric NMSSM parameters and beta functions,NmssmSusy, inherits fromMssmSusy to reuse
the MSSM parameters and beta functions, see Figure C.2. It adds data members and access methods for the new
supersymmetric NMSSM parameters, which can be found in Table C.4.

Appendix C.3.SoftParsNmssm class

To implement the class of soft-breaking NMSSM parameters,SoftParsNmssm, the SoftPars<Susy> template is
instantiated usingNmssmSusy as template parameter. Thereby one obtains the class of MSSMsoft-breaking beta
functions, using supersymmetric NMSSM parameters.SoftParsNmssm then inherits fromSoftPars<NmssmSusy> to
add extra NMSSM contributions to the soft-breaking beta functions:

class NmssmSusy : public MssmSusy {

// implement supersymmetric NMSSM parameter beta functions

// by reusing MSSM ones

};

class SoftParsNmssm : public SoftPars<NmssmSusy> {

// implement soft-breaking NMSSM parameter beta functions

// by reusing MSSM ones

};

Furthermore,SoftParsNmssm adds new soft-breaking NMSSM data members and access methods, which are listed in
Table C.5.
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data variable description
DoubleVector mh0,mA0 vectors of neutral Higgs massesmh0

1...n
,mA0

1...m

(MSSM:n = 2,m= 1, NMSSM:n = 3,m= 2)
double mHpm charged Higgs massmH±

DoubleVector msnu vector ofmν̃i=1...3 masses
DoubleVector mch,mneut vectors ofmχ± i=1...2

, mχ0
i=1...n

respectively
(MSSM:n = 4, NMSSM:n = 5)

double mGluino gluino massmg̃

DoubleMatrix mixNeut orthogonal neutralino mixing matrixO
(MSSM: 4 by 4, NMSSM: 5 by 5)

double thetaL, thetaR θL,R chargino mixing angles
double thetat, thetab θt,b sparticle mixing angles
double thetatau θτ sparticle mixing angle
double thetaH CP-even Higgs mixing angleα in the MSSM
double thetaA0 CP-odd Higgs mixing angleθA0 in the NMSSM
DoubleMatrix mixh0 orthogonal CP-even Higgs mixing matrixR in the NMSSM
DoubleMatrix mu, md, me (2 by 3) matrices of up squark, down squark and

charged slepton masses

Table C.6:sPhysical structure. Masses are pole masses, and stored in units of GeV. Mixing angles are in radian units.

Appendix C.4.NmssmSoftsusy class

To create the NMSSM spectrum calculation class,NmssmSoftsusy, theSoftsusy<SoftPars> template class is in-
stantiated usingSoftParsNmssm as template parameter. Thereby one obtains an NMSSM spectrum calculator, which
uses NMSSM parameters and beta functions.NmssmSoftsusy then inherits fromSoftsusy<SoftParsNmssm> and over-
writes MSSM functions to account for the extra NMSSM particles:

class NmssmSoftsusy : public Softsusy<SoftParsNmssm> {

// organise NMSSM spectrum calculation reusing MSSM functions

};

To implement the NMSSM pole masses and mixing matrices, thesPhysical struct had to be generalized, as in
Table C.6.

Appendix D. Renormalization Group Equations for the NMSSM

In this section, we present the components of the one- and two-loop renormalization group equations (RGEs)
which belong exclusively to the NMSSM. Our expressions havebeen derived in theDR scheme from existing results
[43, 44] for general SUSY gauge theories. The complete RGEs are then obtained by combing the expressions below
with those for the MSSM [43].

Appendix D.1. Yukawa Couplings

For t = ln Q, the trilinear superpotential parameterYi jk evolves according to the general expression [43]

d
dt

Yi jk = Yi jpΓk
p + Yk jpΓi

p + YikpΓ
j
p , (D.1)

where

Γ
j
i =

1
16π2

γ
(1) j
i +

1
(16π2)2

γ
(2) j
i , (D.2)
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andγ(1,2) j
i are the one- and two-loop anomalous dimensions respectively. Note that the 3× 3 Yukawa matricesYU,D,E

are obtained by identifying indices in Eq. (D.1) with the relevant chiral superfields in the superpotential.5

At one-loop order, the only addition to the MSSM expressions[43] for the YU,D,E RGEs is the inclusion ofλ2

terms which originate from the Higgs anomalous dimensions

γ
(1)H1

H1

∣∣∣
λ
= λ2 and γ

(1)H2

H2

∣∣∣
λ
= λ2 . (D.3)

At two-loop order, all the gauge-Yukawa contributions fromλ cancel for eachγ(2) j
i , so the additional contributions

arising in the NMSSM are simply given by

γ
(2)L j

Li

∣∣∣∣
λ
= −λ2(YEY†E) j

i , (D.4)

γ
(2)E j

Ei

∣∣∣∣
λ
= −2λ2(Y†EYE) j

i , (D.5)

γ
(2)Q j

Qi

∣∣∣∣
λ
= −λ2(YUY†U) j

i − λ
2(YDY†D) j

i , (D.6)

γ
(2)D j

Di

∣∣∣∣
λ
= −2λ2(Y†DYD) j

i , (D.7)

γ
(2)U j

Ui

∣∣∣∣
λ
= −2λ2(Y†UYU) j

i , (D.8)

γ
(2)H1

H1

∣∣∣
λ
= −3λ4 − 2λ2κ2 − 3λ2Tr(YUY†U ) , (D.9)

γ
(2)H2

H2

∣∣∣
λ
= −3λ4 − 2λ2κ2 − 3λ2Tr(YDY†D) − λ2Tr(YEY†E) . (D.10)

In a similar manner, the RGEs forλ andκ are obtained from Eq. (D.1), with

d
dt
λ = λ(ΓH1

H1
+ Γ

H2
H2
+ ΓS

S) , (D.11)

d
dt
κ = 3κΓS

S , (D.12)

where the one- and two-loop expressions for the singlet anomalous dimension are given by

γ
(1)S
S = 2λ2 + 2κ2 , (D.13)

γ
(2)S
S = −4λ4 − 8κ4 − 8κ2λ2 − 6λ2Tr(YUY†U) − 6λ2Tr(YUY†U ) − 2λ2Tr(YEY†E) + 6

5g2
1λ

2 + 6g2
2λ

2 . (D.14)

Appendix D.2. Gauge Couplings

In the NMSSM, the one-loop RGEs of the for the gauge couplingsga are identical to those for the MSSM. At
two-loop order however, theλ coupling appears through the term

d
dt

ga ∋ −
g3

a

(16π2)2
Yi jkYi jkCa(k)/d(Ga) , (D.15)

whered(Ga) is the dimension of the adjoint representation of gauge groupGa. The result is

d
dt

ga

∣∣∣∣∣
λ

= − g3
a

(16π2)2
λ2Λ(2)

a , Λ(2)
a = ( 6

5 , 2, 0) , (D.16)

where we have taken into account the additional factor of 2 which arises from tracing overS U(2) group indices in
Eq. (D.15).

5For example, fork = H2 we haveYi jH2 ≡ (YU )i j .
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Appendix D.3. Gaugino Mass Parameters

As for the gauge couplings above, we need only consider the addition of theλ2 terms arising from

d
dt

Ma ∋
2g2

a

(16π2)2

(T i jk
A − MaYi jk )Yi jkCa(k)

d(Ga)
, (D.17)

whereT i jk
A is a trilinear soft SUSY-breaking parameter. By evaluatingthe summations in Eq. (D.17), we find

d
dt

Ma

∣∣∣∣∣
λ

=
2g2

a

(16π2)2
(λaλ − λ2Ma)Λ(2)

a , (D.18)

with Λ(2)
a as given in (D.16).

Appendix D.4.µ Parameters

The general expression [43, 44] for the SUSY-conserving bilinear terms is given by

d
dt
µi j = µipΓ

j
p + µ

jpΓi
p , (D.19)

from which we obtain

d
dt
µ = µ(ΓH1

H1
+ Γ

H2
H2

),

d
dt
µ′ = 2µ′ΓS

S (D.20)

Appendix D.5. Trilinear Couplings

If we denoteT i jk
A as a soft SUSY-breaking trilinear, then the evolution at two-loop is given by

d
dt

T i jk
A =

1
16π2

[
β

(1)
TA

]i jk
+

1
(16π2)2

[
β

(2)
TA

]i jk
, (D.21)

where the explicit expressions for theβ functions can be found in [43]. ForT = U,D,E, theλ contribution to the
one-loopβ function arises from the following factor

[
β

(1)
TA

]i j ∋ 1
2(TA)i j YHαmnY

mnHα + (Yx)
i jYHαmnT

mnHα
A , (D.22)

where there isno summationoverα = 1, 2, with the index determined by the choice ofT (e.g. if T = U thenα = 2).
Expanding the indices leads to [

β
(1)
TA

]i j
∣∣∣∣
λ
= (TA)i jλ2 + (Yx)

i j 2λaλ . (D.23)

The two-loop expressions involve a large number of summations so to minimize the proliferation of generation
indices we choose to express our results in terms of 3× 3 matrices:

β
(2)
UA

∣∣∣
λ
= − λ2UA

[
3λ2 + 2κ2 + 3Tr(YDY†D) + Tr(YEY†E)

] − λ2[5YUY†UUA + 4UAY†UYU + YDY†DUA + 2DAY†DYU
]

− 2λaλYU
[
3λ2 + 2κ2 + 3Tr(YDY†D) + Tr(YEY†E)

] − 2λ2YU
[
3λaλ + 2κaκ + 3Tr(DAY†D) + Tr(EAY†E)

]

− 2λaλ
[
3YUY†UYU + YDY†DYU

]
, (D.24)

β
(2)
DA

∣∣∣
λ
= − λ2DA

[
3λ2 + 2κ2 + 3Tr(YUY†U)

] − λ2[5YDY†DDA + 4DAY†DYD + 2UAY†UYD + YUY†U DA
]

− 2λaλYD
[
3λ2 + 2κ2 + 3Tr(YUY†U)

] − 2λ2YD
[
3λaλ + 2κaκ + 3Tr(UAY†U)

] − 2λaλ
[
3YDY†DYD + YUY†UYD

]
,

(D.25)

β
(2)
EA

∣∣∣
λ
= − λ2EA

[
3λ2 + 2κ2 + 3Tr(YUY†U)

] − λ2[5YEY†EEA + 4EAY†EYE
] − 2λaλYE

[
3λ2 + 2κ2 + 3Tr(YUY†U)

− 2λ2YE
[
3λaλ + 2κaκ + 3Tr(UAY†U)

] − 6λaλYEY†EYE . (D.26)
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Foraλ, the one-loopβ function reads in full

β(1)
aλ =

1
2aλ(YH1mnY

mnH1 + YH2mnY
mnH2 + YS mnY

mnS) + λ(YH1mnT
mnH1
A + YH2mnT

mnH2
A + YS mnT

mnS
A )

− 4
∑

a=1,2,3

(aλ − 2Maλ)g2
aCa(H) , (D.27)

from which the various sums immediately yield

β(1)
aλ = aλ[3Tr(YUY†U) + 3Tr(YDY†D) + Tr(YEY†E) + 12λ2 + 2κ2 − 3

5g2
1 − 3g2

2]

+ λ[6Tr(UAY†U) + 6Tr(DAY†D) + 2Tr(EAY†E) + 4aκκ + 6
5g2

1M1 + 6g2
2M2] . (D.28)

The two-loop expression is given by

β(2)
aλ = − 50λ4aλ − 36λTr(UAY†UYUY†U) − 36λTr(DAY†DYDY†D) − 12λTr(EAY†EYEY†E) − 9aλTr(YUY†UYUY†U )

− 9aλTr(YDY†DYDY†D) − 3aλTr(YEY†EYEY†E) − 8κ4aλ − 32λκ3aκ − 12λ2κ2aλ

− 18λ3[(aλ/λ)Tr(YUY†U) + Tr(UAY†U)
] − 18λ3[(aλ/λ)Tr(YDY†D) + Tr(DAY†D)

]

− 6λ3[(aλ/λ)Tr(YEY†E) + Tr(EAY†E)
] − 24λ3κ2[(aλ/λ) + (aκ/κ)

] − 12λ
[
Tr(UAY†UYDY†D) + Tr(DAY†DYUY†U )

]

− 3λ2aλ
[
3Tr(YUY†U) + 3Tr(YDY†D) + Tr(YEY†E)

] − 6aλTr(YUY†UYDY†D) + 12
5 g2

1λ
2[3

2aλ − λM1
]

+ 8
5g2

1λ
[
Tr(UAY†U) − M1Tr(YUY†U)

] − 4
5g2

1λ
[
Tr(DAY†D) − M1Tr(YDY†D)

]
+ 12

5 g2
1λ

[
Tr(EAY†E) − M1Tr(YEY†E)

]

+ 2
5g2

1aλ
[
2Tr(YUY†U) − Tr(YDY†D) + 3Tr(YEY†e)

]
+ 12g2

2λ
2[3

2aλ − λM2
]

+ 32g2
3λ

[
Tr(UAY†U) − M3Tr(YUY†U)

]
+ 32g2

3λ
[
Tr(DAY†D) − M3Tr(YDY†D)

]
+ 16g2

3aλ
[
Tr(YUY†U) + Tr(YDY†D)

]

+ 1
50g4

1λ
[
207(aλ/λ) − 828M1

]
+ 1

2g4
2λ

[
15(aλ/λ) − 60M2

]
+ 9

5g2
1g

2
2λ

[
(aλ/λ) − 2(M1 + M2)

]
. (D.29)

Foraκ, the one-loop calculation is similar to that ofaλ, with the result

β(1)
aκ = 18aκκ

2 + 12aλκλ + 6aκλ
2 . (D.30)

At two-loop we have

β2)
aκ = − 120κ4aκ − 12λ4aκ − 48λ3κaλ − 48λ2κ3[(aλ/λ) + (aκ/κ)

] − 24λ2κ2aκ

− 36λ2κ
[
Tr(UAY†u) + (aλ/λ)Tr(YuY†u)

] − 36λ2κ
[
Tr(DAY†d) + (aλ/λ)Tr(YdY†d)

]

− 12λ2κ
[
Tr(EAY†e) + (aλ/λ)Tr(YeY

†
e)

] − 6λ2aκ
[
3Tr(YuY†u) + 3Tr(YdY†d) + Tr(YeY

†
e)

]

+ 36
5 g2

1λ
2κ

[
(aλ/λ) + 1

2(aκ/κ) − M1
]
+ 36g2

2λ
2κ

[
(aλ/λ) + 1

2(aκ/κ) − M2
]
. (D.31)

Appendix D.6. Higgs Masses

To determine theλ andκ contributions to the Higgs masses, it is useful to define [22]the following quantities

M2
λ =m2

H1
+m2

H2
+m2

S + a2
λ/λ

2 ,

M2
κ =3m2

S + a2
κ/κ

2 ,

M2
u =Tr(m2

Q̃
YuY†u) + Tr(Yum2

ũY†u) +m2
H2

Tr(YuY†u) + Tr(UAU†A) ,

M2
d =Tr(m2

Q̃
YdY†d) + Tr(Ydm2

d̃
Y†d) +m2

H1
Tr(YdY†d) + Tr(DAD†A) ,

M2
e =Tr(m2

L̃
YeY

†
e) + Tr(Yem

2
ẽY†e) +m2

H1
Tr(YeY

†
e) + Tr(EAE†A) .

(D.32)

Both the up- and down-type Higgs massesmH2 andmH1 receive the sameλ contribution at one-loop order,

β
(1)
m2

Hα

∣∣∣∣∣
λ

= 2λ2M2
λ , α = 1, 2 . (D.33)
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The two-loop expressions form2
H2

are

β
(2)
m2

H2

∣∣∣∣∣
λ

= − 12λ4{M2
λ + (aλ/λ)2} − 6λ2{M2

d + M2
λTr(YdY†d) + 2(aλ/λ)Tr(DAY†d)

}

− 2λ2{M2
e + M2

λTr(YeY
†
e) + 2(aλ/λ)Tr(EAY†e)

} − 4λ2κ2{M2
λ + M2

κ + 2(aλ/λ)(aκ/κ)
}

+ 6
5g2

1λ
2(m2

H1
−m2

H2
) , (D.34)

with a similar result form2
H1

,

β
(2)
m2

H1

∣∣∣∣∣
λ

= − 12λ4{M2
λ + (aλ/λ)2} − 6λ2{M2

u + M2
λTr(YuY†u) + 2(aλ/λ)Tr(UAY†u)

}

− 4λ2κ2{M2
λ + M2

κ + 2(aλ/λ)(aκ/κ)
} − 6

5g2
1λ

2(m2
H1
−m2

H2
) . (D.35)

For the singlet massmS, the one-loop result is

β
(1)
m2

S
= YS pqY

pqSm2
S + 2YS pqY

S pr(m2)q
r + hS pqh

S pq, (D.36)

where

YS pqY
S pr(m2)q

r = 2λ2(m2
H1
+m2

H2
) + 4κ2m2

S ,

hS pqh
S pq= 4a2

λ + 4a2
κ , (D.37)

and thus Eq. (D.36) becomes
β

(1)
m2

S
= 4λ2M2

λ + 4κ2M2
κ . (D.38)

At two-loop we get

β
(2)
m2

S

= − 16λ4{M2
λ + (aλ/λ)2} − 32κ4{M2

κ + (aκ/κ)2} − 12λ2{M2
λTr(YuY†u) + M2

u + 2(aλ/λ)Tr(UAY†u)
}

− 12λ2{M2
λTr(YdY†d) + M2

d + 2(aλ/λ)Tr(DAY†d)
} − 4λ2{M2

λTr(YeY
†
e) + M2

e + 2(aλ/λ)Tr(EAY†e)
}

− 16λ2κ2{M2
λ + M2

κ + 2(aλ/λ)(aκ/κ)
}
+ 12

5 g2
1λ

2{M2
λ − 2M1[(aλ/λ) − M1]

}

+ 12g2
2λ

2{M2
λ − 2M2[(aλ/λ) − M2]

}
(D.39)

Appendix D.7. Squark and Slepton Masses

The squark and slepton masses only receive contributions fromλ, κ at two-loop order. The results are listed below,
where1 is a 3× 3 unit matrix.

β
(2)
m2

Q̃

∣∣∣∣∣
λ

= − λ2{2Y†um2
ũYu +m2

Q̃
YuY†u + YuY†um2

Q̃
+ 2m2

H2
YuY†u + 2UAU†A + 2M2

λYuY†u + 2aλ/λ(YuU†A + UAY†u)
}

− λ2{2Y†dm2
d̃
Yd +m2

Q̃
YdY†d + YdY†dm2

Q̃
+ 2m2

H1
YdY†d + 2DAD†A + 2M2

λYdY†d + 2aλ/λ(YdD†A + DAY†d)
}

+ 2
5g2

1λ
2(m2

H1
−m2

H2
)1 , (D.40)

β
(2)
m2

ũ

∣∣∣∣∣
λ

= − 2λ2{2Y†um2
Q̃

Yu +m2
ũY†uYu + Y†uYum2

ũ + 2m2
H2

Y†uYu + 2U†AUA + 2M2
λY
†
uYu + 2aλ/λ(Y†uUA + U†AYu)

}

− 8
5g2

1λ
2(m2

H1
−m2

H2
)1 , (D.41)

β
(2)
m2

d̃

∣∣∣∣∣
λ

= − 2λ2{2Y†dm2
Q̃

Yd +m2
d̃
Y†dYd + Y†dYdm2

d̃
+ 2m2

H1
Y†dYd + 2D†ADA + 2M2

λY
†
dYd + 2aλ/λ(Y†dDA + D†AYd)

}

+ 4
5g2

1λ
2(m2

H1
−m2

H2
)1 , (D.42)
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β
(2)
m2

L̃

∣∣∣∣∣
λ

= − λ2{2Y†em2
ẽYe +m2

L̃
YeY

†
e + YeY

†
em2

L̃
+ 2m2

H1
YeY

†
e + 2EAE†A + 2M2

λYeY
†
e + 2aλ/λ(YeE

†
A + EAY†e)

}

− 6
5g2

1λ
2(m2

H1
−m2

H2
)1 , (D.43)

β
(2)
m2

ẽ

∣∣∣∣∣
λ

= − 2λ2{2Y†em2
L̃
Ye +m2

ẽY†eYe+ Y†eYem
2
ẽ + 2m2

H1
Y†eYe + 2E†AEA + 2M2

λY
†
eYe + 2aλ/λ(Y†eEA + E†AYe)

}

+ 12
5 g2

1λ
2(m2

H1
−m2

H2
)1 . (D.44)

Appendix D.8. Tadpole Terms

The general RGE for a SUSY-conserving tadpole term reads

d
dt

Li = LpΓi
p , (D.45)

and thus fori = S one has
d
dt
ξF = ξFΓ

S
S . (D.46)

For the soft SUSY-breaking termξS, we use the general RGE from [44] because Martin and Vaughn [43] do not
include the tadpole as part ofLsoft. The relevant RGE reads

d
dt
ξS =

1
16π2

β
(1)
ξS
+

1
(16π2)2

β
(2)
ξS
, (D.47)

where the one-loopβ function is given by

β
(1)
ξS
= 2(λ2 + κ2)ξS + 4(λaλ + κaκ)ξF + 2µ′(2λm2

3 + κm
′2
S )

+ 4[λµ(m2
H2
+m2

H1
) + κµ′m2

S]µ jl + 4aλm
2
3 + 2aκm

′2
S . (D.48)

At two-loop we obtain

β
(2)
ξS
= − 4λ4{ξS + 4(aλ/λ)ξF

} − 8κ4{ξS + 4(aκ/κ)ξF
} − 6λ2{ξSTr(YuY†u) + 2[(aλ/λ)Tr(YuY†u) + Tr(UAY†u)]
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− 4λ
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λ + (aλ/λ)[(aκ/κ) + µ′] + 2m2
S]

}
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}

+ 6
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1
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3m2
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H1
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− (aλ/λ)M1 − µ′M1 + 2M2

1] + λ[2ξF [(aλ/λ) − M1] + ξS]
}

+ 3λg2
2
{
3m2
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(D.49)
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Appendix D.9. Additional Parameters

Here we list theλ andκ contributions to the RGEs for the scalar massesm2
3 ≡ Bµ andm′2S ≡ B′µ′, and the evolution

of the Higgs VEVsv1,2,s. For the former, we get at one-loop

β
(1)
m2

3

∣∣∣∣∣
λ

= 2λ(3λm2
3 + 2µaλ) + 2λκm′2S . (D.50)

At two-loop we have

β
(2)
m2

3

∣∣∣∣∣
λ

= −2λ4(7m2
3 + 16µaλ/λ) − 3λ2{5m2

3Tr(YuY†u) + 2µ[3Tr(UAY†u) + (aλ/λ)Tr(YuY†u)]
}

− 3λ2{5m2
3Tr(YdY†d) + 2µ[3Tr(DAY†d) + (aλ/λ)Tr(YdY†d)

}

− λ2{5m2
3Tr(YeY

†
e) + 2µ[3Tr(EAY†e) + (aλ/λ)Tr(YeY

†
e)]

}

− 4λ2κ2{m2
3 + 2µ[(aλ/λ) + (aκ/κ)]

} − 8λ3κ
{
m′2S + µ

′(aλ/λ)
} − 8λκ3{m′2S + µ′(aκ/κ)

}

+ 12
5 g2

1λ
2(m2

3 − µM1) + 12g2
2λ

2(m2
3 − µM2) . (D.51)

Form′2S , the one-loopβ function reads

β
(1)
m′2S
= 4λ(λm′2S + 2µ′aλ) + 8κ(κm′2S + µ

′aκ) + 8λκm2
3 . (D.52)

At two-loop we have

β
(2)
m′2S
= − 8λ4{m′2S + 4µ′(aλ/λ)

} − 16κ4{2m′2S + 5µ′(aκ/κ)
} − 16λ2κ2{2m′2S + µ
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}
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}
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e) + Tr(EAY†e)]

} − 16λ3κ
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+ 24
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5 λ

2g2
1
{
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. (D.53)

At one-loop, the up- and down-type Higgs VEVsvu,d receive additional contributions solely fromλ [45],

β(1)
vα

∣∣∣
λ
= −vαλ

2 , α = 1, 2 , (D.54)

while theβ function for the singlet VEVs is given by

β(1)
s = −2s(λ2 + κ2) . (D.55)

At two-loop, theβ functions are given by [45, 46]

β(2)
v1
= v1

{
γ

(2)H1

H1
−

(
3
10g2

1 +
3
2g2

2

)[
3Tr(YDY†D) + Tr(YEY†E) + λ2

]
+ 9

2g4
2

}
, (D.56)

β(2)
v2
= v2

{
γ

(2)H2

H2
−

(
3
10g2

1 +
3
2g2

2

)[
3Tr(YUY†U) + λ2

]
+ 9

2g4
2

}
, (D.57)

β(2)
s = sγ(2)S

S . (D.58)

The one-loopβ function for tanβ is the same in the NMSSM as the MSSM. At two-loop, one has

β
(2)
tβ = tanβ

{
γ

(2)H2

H2
− γ(2)H1

H1
+

(
3
10g2

1 +
3
2g2

2

) β(1)
tβ

tanβ

}
. (D.59)
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