SoftSUSY is hosted by Hepforge, IPPP Durham
SOFTSUSY  4.0
Tensor Class Reference

Three-index tensor for containing information on RPV couplings. More...

#include <tensor.h>

Public Member Functions

 Tensor ()
 
 Tensor (const Tensor &)
 Constructor sets object to be equal to another.
 
void threecheck (const DoubleMatrix &, const DoubleMatrix &, const DoubleMatrix &)
 Checks that the three input matrices have dimension 3x3.
 
double & operator() (int, int, int)
 References a single element of the tensor.
 
DoubleMatrixoperator() (int)
 References a single matrix of the tensor.
 
const DoubleMatrixdisplay (int) const
 Returns a single matrix of the tensor.
 
double display (int, int, int) const
 Returns a single element of the tensor.
 
void checkOut (double) const
 
void set (int i, int j, int k, double f)
 Sets a single element of tensor $ T_{ijk} $=f.
 
DoubleVector trace (int) const
 Does $ V^i = T^{jij} $ where the input l is the position of i in T.
 
Tensor transpose () const
 Transposes each matrix held in the tensor.
 
DoubleMatrix dotProd (const DoubleVector &v, int i) const
 
Tensor operator* (double) const
 Multiplies all matrices in tensor by a double.
 
Tensor operator/ (double) const
 Divides all matrices in tensor by a double.
 
Tensor operator* (const DoubleMatrix &) const
 $ T^{ijk} = T^{ijl} M_{lk} $
 
Tensor operator+ (const Tensor &) const
 Adds all matrices between two tensors.
 
Tensor operator- (const Tensor &) const
 Subtracts all matrices between two tensors.
 
Tensor product (const DoubleMatrix &) const
 Does $ T^{ijk} = T^{ljk} M_{li} $.
 
Tensor swap (int)
 Swaps the other indices apart ith one eg i=1: $ {T^{ijk}}'=T^{ikj} $.
 
Tensor raise (const DoubleMatrix &M) const
 $ T^kij=M^kl T^lij $
 

Detailed Description

Three-index tensor for containing information on RPV couplings.

Constructor & Destructor Documentation

Tensor::Tensor ( )

Constructor fills object with zeroes by default

Member Function Documentation

void Tensor::checkOut ( double  tol) const

outputs tensors to standard input IF they're elements sum to more than tol

DoubleMatrix Tensor::dotProd ( const DoubleVector v,
int  i 
) const

Outputs $ T^{ijk} V_i $ summing over ith (1st 2nd or 3rd) index. eg i=1: $ M_{ij} = T^{kij} V_k $ 2: $ M_{ij} = T^{jki} V_k $ 3: $ M_{ij} = T^{ijk} V_k $ so the matrix indices are just in order from L-R AFTER summed index.


The documentation for this class was generated from the following files: