softsusy is hosted by Hepforge, IPPP Durham
 SOFTSUSY  4.1
Tensor Class Reference

Three-index tensor for containing information on RPV couplings. More...

#include <tensor.h>

## Public Member Functions

Tensor ()

Tensor (const Tensor &)
Constructor sets object to be equal to another.

void threecheck (const DoubleMatrix &, const DoubleMatrix &, const DoubleMatrix &)
Checks that the three input matrices have dimension 3x3.

double & operator() (int, int, int)
References a single element of the tensor.

DoubleMatrixoperator() (int)
References a single matrix of the tensor.

const DoubleMatrixdisplay (int) const
Returns a single matrix of the tensor.

double display (int, int, int) const
Returns a single element of the tensor.

void checkOut (double) const

void set (int i, int j, int k, double f)
Sets a single element of tensor $$T_{ijk}$$=f.

DoubleVector trace (int) const
Does $$V^i = T^{jij}$$ where the input l is the position of i in T.

Tensor transpose () const
Transposes each matrix held in the tensor.

DoubleMatrix dotProd (const DoubleVector &v, int i) const

Tensor operator* (double) const
Multiplies all matrices in tensor by a double.

Tensor operator/ (double) const
Divides all matrices in tensor by a double.

Tensor operator* (const DoubleMatrix &) const
$$T^{ijk} = T^{ijl} M_{lk}$$

Tensor operator+ (const Tensor &) const
Adds all matrices between two tensors.

Tensor operator- (const Tensor &) const
Subtracts all matrices between two tensors.

Tensor product (const DoubleMatrix &) const
Does $$T^{ijk} = T^{ljk} M_{li}$$.

Tensor swap (int)
Swaps the other indices apart ith one eg i=1: $${T^{ijk}}'=T^{ikj}$$.

Tensor raise (const DoubleMatrix &M) const
$$T^kij=M^kl T^lij$$

## Detailed Description

Three-index tensor for containing information on RPV couplings.

## ◆ Tensor()

 Tensor::Tensor ( )

Constructor fills object with zeroes by default

## ◆ checkOut()

 void Tensor::checkOut ( double tol ) const

outputs tensors to standard input IF they're elements sum to more than tol

## ◆ dotProd()

 DoubleMatrix Tensor::dotProd ( const DoubleVector & v, int i ) const

Outputs $$T^{ijk} V_i$$ summing over ith (1st 2nd or 3rd) index. eg i=1: $$M_{ij} = T^{kij} V_k$$ 2: $$M_{ij} = T^{jki} V_k$$ 3: $$M_{ij} = T^{ijk} V_k$$ so the matrix indices are just in order from L-R AFTER summed index.

The documentation for this class was generated from the following files: