SOFTSUSY
4.1
|
Three-index tensor for containing information on RPV couplings. More...
#include <tensor.h>
Public Member Functions | |
Tensor () | |
Tensor (const Tensor &) | |
Constructor sets object to be equal to another. | |
void | threecheck (const DoubleMatrix &, const DoubleMatrix &, const DoubleMatrix &) |
Checks that the three input matrices have dimension 3x3. | |
double & | operator() (int, int, int) |
References a single element of the tensor. | |
DoubleMatrix & | operator() (int) |
References a single matrix of the tensor. | |
const DoubleMatrix & | display (int) const |
Returns a single matrix of the tensor. | |
double | display (int, int, int) const |
Returns a single element of the tensor. | |
void | checkOut (double) const |
void | set (int i, int j, int k, double f) |
Sets a single element of tensor \( T_{ijk} \)=f. | |
DoubleVector | trace (int) const |
Does \( V^i = T^{jij} \) where the input l is the position of i in T. | |
Tensor | transpose () const |
Transposes each matrix held in the tensor. | |
DoubleMatrix | dotProd (const DoubleVector &v, int i) const |
Tensor | operator* (double) const |
Multiplies all matrices in tensor by a double. | |
Tensor | operator/ (double) const |
Divides all matrices in tensor by a double. | |
Tensor | operator* (const DoubleMatrix &) const |
\( T^{ijk} = T^{ijl} M_{lk} \) | |
Tensor | operator+ (const Tensor &) const |
Adds all matrices between two tensors. | |
Tensor | operator- (const Tensor &) const |
Subtracts all matrices between two tensors. | |
Tensor | product (const DoubleMatrix &) const |
Does \( T^{ijk} = T^{ljk} M_{li} \). | |
Tensor | swap (int) |
Swaps the other indices apart ith one eg i=1: \( {T^{ijk}}'=T^{ikj} \). | |
Tensor | raise (const DoubleMatrix &M) const |
\( T^kij=M^kl T^lij \) | |
Three-index tensor for containing information on RPV couplings.
Tensor::Tensor | ( | ) |
Constructor fills object with zeroes by default
void Tensor::checkOut | ( | double | tol | ) | const |
outputs tensors to standard input IF they're elements sum to more than tol
DoubleMatrix Tensor::dotProd | ( | const DoubleVector & | v, |
int | i | ||
) | const |
Outputs \( T^{ijk} V_i \) summing over ith (1st 2nd or 3rd) index. eg i=1: \( M_{ij} = T^{kij} V_k \) 2: \( M_{ij} = T^{jki} V_k \) 3: \( M_{ij} = T^{ijk} V_k \) so the matrix indices are just in order from L-R AFTER summed index.